Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39332412

RESUMO

Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.

2.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250534

RESUMO

During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.


Assuntos
Transdiferenciação Celular , Fatores de Transcrição , Trofoblastos , Humanos , Trofoblastos/citologia , Trofoblastos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Blastocisto/metabolismo , Blastocisto/citologia , Gravidez , Diferenciação Celular
3.
Nat Cell Biol ; 26(3): 353-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443567

RESUMO

Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.


Assuntos
Embrião de Mamíferos , Camadas Germinativas , Gravidez , Feminino , Humanos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Transdução de Sinais , Implantação do Embrião
4.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879938

RESUMO

Recent advances in single-cell omics have transformed characterisation of cell types in challenging-to-study biological contexts. In contexts with limited single-cell samples, such as the early human embryo inference of transcription factor-gene regulatory network (GRN) interactions is especially difficult. Here, we assessed application of different linear or non-linear GRN predictions to single-cell simulated and human embryo transcriptome datasets. We also compared how expression normalisation impacts on GRN predictions, finding that transcripts per million reads outperformed alternative methods. GRN inferences were more reproducible using a non-linear method based on mutual information (MI) applied to single-cell transcriptome datasets refined with chromatin accessibility (CA) (called MICA), compared with alternative network prediction methods tested. MICA captures complex non-monotonic dependencies and feedback loops. Using MICA, we generated the first GRN inferences in early human development. MICA predicted co-localisation of the AP-1 transcription factor subunit proto-oncogene JUND and the TFAP2C transcription factor AP-2γ in early human embryos. Overall, our comparative analysis of GRN prediction methods defines a pipeline that can be applied to single-cell multi-omics datasets in especially challenging contexts to infer interactions between transcription factor expression and target gene regulation.


Assuntos
Redes Reguladoras de Genes , Multiômica , Humanos , Redes Reguladoras de Genes/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Embrião de Mamíferos
7.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36971487

RESUMO

Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.


Assuntos
Via de Sinalização Hippo , Transdução de Sinais , Bovinos , Humanos , Feminino , Gravidez , Camundongos , Ratos , Animais , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Blastocisto/metabolismo , Placenta/metabolismo , Mamíferos/metabolismo , Linhagem da Célula
8.
Nat Cell Biol ; 25(3): 439-452, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732633

RESUMO

Accurate chromosome segregation during meiosis is crucial for reproduction. Human and porcine oocytes transiently cluster their chromosomes before the onset of spindle assembly and subsequent chromosome segregation. The mechanism and function of chromosome clustering are unknown. Here we show that chromosome clustering is required to prevent chromosome losses in the long gap phase between nuclear envelope breakdown and the onset of spindle assembly, and to promote the rapid capture of all chromosomes by the acentrosomal spindle. The initial phase of chromosome clustering is driven by a dynamic network of Formin-2- and Spire-nucleated actin cables. The actin cables form in the disassembling nucleus and migrate towards the nuclear centre, moving the chromosomes centripetally by interacting with their arms and kinetochores as they migrate. A cage of stable microtubule loops drives the late stages of chromosome clustering. Together, our data establish a crucial role for chromosome clustering in accurate progression through meiosis.


Assuntos
Actinas , Oócitos , Humanos , Animais , Suínos , Actinas/genética , Actinas/metabolismo , Oócitos/metabolismo , Meiose/genética , Microtúbulos/metabolismo , Cinetocoros/metabolismo , Segregação de Cromossomos , Fuso Acromático/genética , Fuso Acromático/metabolismo , Mamíferos/metabolismo
9.
Science ; 378(6617): eabq4835, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264786

RESUMO

Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.


Assuntos
Mitocôndrias , Oócitos , RNA Mensageiro Estocado , Animais , Feminino , Hidrogéis , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oócitos/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos , Camundongos , Suínos , Bovinos , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo
10.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012172

RESUMO

Medically assisted reproduction, now considered a routine, successful treatment for infertility worldwide, has produced at least 8 million live births. However, a growing body of evidence is pointing toward an increased incidence of epigenetic/imprinting disorders in the offspring, raising concern that the techniques involved may have an impact on crucial stages of early embryo and fetal development highly vulnerable to epigenetic influence. In this paper, the key role of methylation processes in epigenesis, namely the essential biochemical/metabolic pathways involving folates and one-carbon cycles necessary for correct DNA/histone methylation, is discussed. Furthermore, potential contributors to epigenetics dysregulation during the three phases of assisted reproduction: preparation for and controlled ovarian hyperstimulation (COH); methylation processes during the preimplantation embryo culture stages; the effects of unmetabolized folic acid (UMFA) during embryogenesis on imprinting methyl "tags", are described. Advances in technology have opened a window into developmental processes that were previously inaccessible to research: it is now clear that ART procedures have the potential to influence DNA methylation in embryonic and fetal life, with an impact on health and disease risk in future generations. Critical re-evaluation of protocols and procedures is now an urgent priority, with a focus on interventions targeted toward improving ART procedures, with special attention to in vitro culture protocols and the effects of excessive folic acid intake.


Assuntos
Impressão Genômica , Técnicas de Reprodução Assistida , Metilação de DNA , Epigênese Genética , Ácido Fólico , Reprodução , Técnicas de Reprodução Assistida/efeitos adversos
12.
Biomolecules ; 12(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35204698

RESUMO

Methylation is an essential biochemical mechanism that is central to the transmission of life, and crucially responsible for regulating gametogenesis and continued embryo development. The methylation of DNA and histones drives cell division and regulation of gene expression through epigenesis and imprinting. Brain development and its maturation also depend on correct lipid methylation, and continued neuronal function depends on biogenic amines that require methylation for their synthesis. All methylation processes are carried out via a methyltransferase enzyme and its unique co-factor S-adenosylmethionine (SAM); the transfer of a methyl group to a target molecule results in the release of SAH (SA homocysteine), and then homocysteine (Hcy). Both of these molecules are toxic, inhibiting methylation in a variety of ways, and Hcy recycling to methionine is imperative; this is achieved via the one carbon cycle, supported by the folates cycle. Folate deficiency causes hyperhomocysteinaemia, with several associated diseases; during early pregnancy, deficiency interferes with closure of the neural tube at the fourth week of gestation, and nutraceutical supplementation has been routinely prescribed to prevent neural tube defects, mainly involving B vitamins, Zn and folates. The two metabolic pathways are subject to single nucleotide polymorphisms that alter their activity/capacity, often severely, impairing specific physiological functions including fertility, brain and cardiac function. The impact of three types of nutraceutical supplements, folic acid (FA), folinic acid (FLA) and 5 Methyl THF (MTHF), will be discussed here, with their positive effects alongside potentially hazardous secondary effects. The issue surrounding FA and its association with UMFA (unmetabolized folic acid) syndrome is now a matter of concern, as UMFA is currently found in the umbilical cord of the fetus, and even in infants' blood. We will discuss its putative role in influencing the acquisition of epigenetic marks in the germline, acquired during embryogenesis, as well as the role of FA in the management of cancerous disease.


Assuntos
Ácido Fólico , Tetra-Hidrofolatos , Ciclo do Carbono , Suplementos Nutricionais , Feminino , Ácido Fólico/metabolismo , Humanos , Lactente , Leucovorina , Mutação , Gravidez , Tetra-Hidrofolatos/metabolismo
13.
Science ; 375(6581): eabj3944, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143306

RESUMO

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/deficiência , Oócitos/fisiologia , Oócitos/ultraestrutura , Fuso Acromático/fisiologia , Polos do Fuso/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Bovinos , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Feminino , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Proteínas Recombinantes/metabolismo , Fuso Acromático/ultraestrutura , Polos do Fuso/ultraestrutura , Suínos
14.
Zygote ; 30(2): 149-158, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34313209

RESUMO

Assisted reproductive technology is today considered a safe and reliable medical intervention, with healthy live births a reality for many IVF and ICSI treatment cycles. However, there are increasing numbers of published reports describing epigenetic/imprinting anomalies in children born as a result of these procedures. These anomalies have been attributed to methylation errors in embryo chromatin remodelling during in vitro culture. Here we re-visit three concepts: (1) the so-called 'in vitro toxicity' of 'essential amino acids' before the maternal to zygotic transition period; (2) the effect of hyperstimulation (controlled ovarian hyperstimulation) on homocysteine in the oocyte environment and the effect on methylation in the absence of essential amino acids; and (3) the fact/postulate that during the early stages of development the embryo undergoes a 'global' demethylation. Methylation processes require efficient protection against oxidative stress, which jeopardizes the correct acquisition of methylation marks as well as subsequent methylation maintenance. The universal precursor of methylation [by S-adenosyl methionine (SAM)], methionine, 'an essential amino acid', should be present in the culture. Polyamines, regulators of methylation, require SAM and arginine for their syntheses. Cystine, another 'semi-essential amino acid', is the precursor of the universal protective antioxidant molecule: glutathione. It protects methylation marks against some undue DNA demethylation processes through ten-eleven translocation (TET), after formation of hydroxymethyl cytosine. Early embryos are unable to convert homocysteine to cysteine as the cystathionine ß-synthase pathway is not active. In this way, cysteine is a 'real essential amino acid'. Most IVF culture medium do not maintain methylation/epigenetic processes, even in mouse assays. Essential amino acids should be present in human IVF medium to maintain adequate epigenetic marking in preimplantation embryos. Furthermore, morphological and morphometric data need to be re-evaluated, taking into account the basic biochemical processes involved in early life.


Assuntos
Metilação de DNA , Fertilização in vitro , Animais , Blastocisto , Epigênese Genética , Fertilização in vitro/métodos , Homeostase , Camundongos , Estresse Oxidativo , Técnicas de Reprodução Assistida
15.
Development ; 148(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34661235

RESUMO

Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and naïve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development. We investigate the function of KLF17 using primed and naïve hESCs for gain- and loss-of-function analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a naïve-like transcriptome and that KLF17 can drive transgene-mediated resetting to naïve pluripotency. This implies a role for KLF17 in establishing naïve pluripotency. However, CRISPR-Cas9-mediated knockout studies reveal that KLF17 is not required for naïve pluripotency acquisition in vitro. Transcriptome analysis of naïve hESCs identifies subtle effects on metabolism and signalling pathways following KLF17 loss of function, and possible redundancy with other KLF paralogues. Overall, we show that KLF17 is sufficient, but not necessary, for naïve pluripotency under the given in vitro conditions.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
16.
Nat Commun ; 12(1): 3679, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140473

RESUMO

Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.


Assuntos
Implantação do Embrião/genética , Desenvolvimento Embrionário , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camadas Germinativas/metabolismo , Análise de Célula Única/métodos , Via de Sinalização Wnt , Proteína Morfogenética Óssea 1/antagonistas & inibidores , Linhagem da Célula , Células Cultivadas , Implantação do Embrião/fisiologia , Embrião de Mamíferos , Fatores de Crescimento de Fibroblastos/metabolismo , Gastrulação/fisiologia , Camadas Germinativas/citologia , Humanos , Processamento de Imagem Assistida por Computador , Família Multigênica , Proteína Nodal/antagonistas & inibidores , RNA-Seq , Análise Espaço-Temporal
17.
Commun Biol ; 4(1): 651, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140633

RESUMO

Assessment of the endometrium often necessitates a biopsy, which currently involves an invasive, transcervical procedure. Here, we present an alternative technique based on deriving organoids from menstrual flow. We demonstrate that organoids can be derived from gland fragments recovered from menstrual flow. To confirm they faithfully reflect the in vivo state we compared organoids derived from paired scratch biopsies and ensuing menstrual flow from patients undergoing in vitro fertilisation (IVF). We demonstrate that the two sets of organoids share the same transcriptome signature, derivation efficiency and proliferation rate. Furthermore, they respond similarly to sex steroids and early-pregnancy hormones, with changes in morphology, receptor expression, and production of 'uterine milk' proteins that mimic those during the late-secretory phase and early pregnancy. This technique has wide-ranging impact for non-invasive investigation and personalised approaches to treatment of common gynaecological conditions, such as endometriosis, and reproductive disorders, including failed implantation after IVF and recurrent miscarriage.


Assuntos
Endométrio/citologia , Menstruação , Organoides/citologia , Adulto , Células Cultivadas , Endométrio/crescimento & desenvolvimento , Endométrio/metabolismo , Feminino , Fertilização in vitro , Humanos , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Projetos Piloto
18.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33964210

RESUMO

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Aneuploidia , Animais , Bovinos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Segregação de Cromossomos/fisiologia , Cromossomos/metabolismo , Fertilização/genética , Humanos , Masculino , Microtúbulos/metabolismo , Mitose , Oócitos/metabolismo , Espermatozoides/metabolismo , Zigoto/metabolismo
19.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297303

RESUMO

Methylation is a universal biochemical process which covalently adds methyl groups to a variety of molecular targets. It plays a critical role in two major global regulatory mechanisms, epigenetic modifications and imprinting, via methyl tagging on histones and DNA. During reproduction, the two genomes that unite to create a new individual are complementary but not equivalent. Methylation determines the complementary regulatory characteristics of male and female genomes. DNA methylation is executed by methyltransferases that transfer a methyl group from S-adenosylmethionine, the universal methyl donor, to cytosine residues of CG (also designated CpG). Histones are methylated mainly on lysine and arginine residues. The methylation processes regulate the main steps in reproductive physiology: gametogenesis, and early and late embryo development. A focus will be made on the impact of assisted reproductive technology and on the impact of endocrine disruptors (EDCs) via generation of oxidative stress.


Assuntos
Metilação de DNA , Epigênese Genética , Código das Histonas , Animais , Desenvolvimento Embrionário/genética , Gametogênese , Humanos , Técnicas de Reprodução Assistida/efeitos adversos
20.
Nature ; 587(7834): 443-447, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32968278

RESUMO

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Assuntos
Evolução Biológica , Ectoderma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Trofoblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/metabolismo , Bovinos , Linhagem da Célula , Polaridade Celular , Ectoderma/citologia , Embrião de Mamíferos/enzimologia , Feminino , Fator de Transcrição GATA3/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos , Mórula/citologia , Mórula/enzimologia , Mórula/metabolismo , Placenta/citologia , Placenta/metabolismo , Gravidez , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Proteínas de Sinalização YAP , Saco Vitelino/citologia , Saco Vitelino/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA