RESUMO
This prospective study was designed to investigate the effects of maternal temperament on uterine blood flow, fetal heart rate, gestational length, and fetal birth weight in a goat experimental model. Based on the arena test, behavioral testing related to fear-eliciting stimulus, goats were divided into nervous (n = 13) and calm (n = 11) groups. After mating, the perfusion of maternal uterine arteries (UTAs) and its related Doppler parameters, blood flow volume (BFV), time-averaged mean velocity (TAMEANV), acceleration (Acce), and resistance impedance (S/D), were evaluated biweekly from week two until the end of pregnancy. Fetal heart rate (FHR) was investigated during the pregnancy in addition to the gestation length (GL) and fetal birth weight (FBW). The UTA-BFV and TAMEANV, as well as Acce and S/D, were influenced by maternal temperament (p < .05). The FHR showed no significant changes between experimental animals of different temperaments (p = .81). Both GL and FBW were increased in calm rather than nervous goats (p < .05). These results indicated that the maternal nervous (temperament) have negative impacts on uterine artery Doppler indices, fetal growth, and gestational length in a goat experimental model.
Assuntos
Peso ao Nascer/fisiologia , Estatura , Desenvolvimento Fetal/fisiologia , Feto/embriologia , Feto/fisiologia , Cabras/fisiologia , Cabras/psicologia , Frequência Cardíaca Fetal , Fluxo Sanguíneo Regional , Temperamento/fisiologia , Útero/irrigação sanguínea , Animais , Feminino , Humanos , Gravidez , Estudos ProspectivosRESUMO
The aims of the present study were to determine uterine, vaginal and placental blood flows by Doppler ultrasound cross-buffalo gestation and to evaluate the relationships among reproductive Doppler parameters and serum metabolic parameters as well as oxidative stress. Uterine (UA) and vaginal (VA) arteries were scanned every month, and placentome was scanned from month 4 till 8 in gestation. Time-averaged maximum velocity (TAMV), pulsatility index (PI), resistance index (RI), systolic/diastolic ratio (SD) and arterial diameter (AD) were used for accessing UA and VA hemodynamics. Time-averaged maximum velocity positively correlated with and AD, and both negatively correlated with their PI, RI and SD in UA and VA. TAMV and AD increased constantly in pregnancy, with maximum increase in months 4 and 9. Pulsatility index, RI and AD of UA decreased between months 4 and 9, while PI, RI and AD of VA decreased between months 5 and 9 and then increased in month 10 in pregnancy. Time-averaged maximum velocity of placentome blood flow increased exponentially from months 4 to 8, but decreased at the last two months in pregnancy. Serum lipids were significantly higher in the first month compared to all other months, while glucose was significantly lower in months 9 and 10. Malondialdehyde increased from month 3 till term, but peaked in month 5 and 10. Glutathione and catalase were highest in the first month and remained after. Time-averaged maximum velocity and AD for both UA and VA negatively correlated with serum lipids, glucose, catalase and glutathione, while positively correlated with malondialdehyde and total protein. Thus, increases in uterine blood flow (UtBF), vaginal blood flow (VaBF) and placental blood flow (PaBF) are associated with increased metabolism and oxidative stress in buffalo pregnancy.
Assuntos
Velocidade do Fluxo Sanguíneo/veterinária , Búfalos/fisiologia , Estresse Oxidativo , Gravidez/fisiologia , Animais , Glicemia , Búfalos/sangue , Búfalos/metabolismo , Feminino , Hemodinâmica , Lipídeos/sangue , Circulação Placentária , Ultrassonografia Doppler/veterinária , Útero/irrigação sanguínea , Vagina/irrigação sanguíneaRESUMO
The cryopreservation of germ cells is a major tool for the propagation of animals with desired genetic traits. Although cryopreservation of spermatozoa in some animals is effective, its effectiveness is variable. For example, cryopreservation efficiency of buffalo bull spermatozoa remains very poor. In this study, we evaluated sperm DNA damage and ultrastructure in buffalo bull spermatozoa vitrified in the presence or absence of cholesterol-loaded cyclodextrins (CLC). Our results showed that cryopreserved buffalo spermatozoa had elevated levels of deteriorated plasma and mitochondrial membranes, which are the likely causes of DNA damage after vitrification. Accordingly, the levels of the activity of Alanine Aminotransferase (ALT), Alkaline phosphatase (ALP) and Aspartate Aminotransferase (AST) were also elevated following exposure of buffalo bull spermatozoa to a cycle of freezing-thawing. Importantly, supplementation of Tris-Egg Yolk-Glucose (TEYG) extender with (CLC) improved the quality of buffalo spermatozoa following cryopreservation. This protective effect of CLC is likely due to decreasing mitochondrial and plasma membrane deterioration with subsequent inhibition of DNA damage. These results suggest that cholesterol loss is the likely reason for poor semen quality in buffaloes following cryopreservation, and provide evidence that manipulating lipid content during cryopreservation is a promising strategy to improve the quality of buffalo semen.