Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1576: 255-271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28710687

RESUMO

The reaggregation of dissociated cells to form organotypic structures provides an in vitro system for the analysis of the cellular interactions and molecular mechanisms involved in the formation of tissue architecture. The retina, an outgrowth of the forebrain, is a precisely layered neural tissue, yet the mechanisms underlying layer formation are largely unexplored. Here we describe the protocol to dissociate, re-aggregate, and culture zebrafish retinal cells from a transgenic, Spectrum of Fates, line where all main cell types are labelled with a combination of fluorescent proteins driven by fate-specific promoters. These cells re-aggregate and self-organize in just 48 h in minimal culture conditions. We also describe how the patterning in these aggregates can be analyzed using isocontour profiling to compare whether different conditions affect their self-organization.


Assuntos
Animais Geneticamente Modificados/metabolismo , Diferenciação Celular , Neurônios/citologia , Retina/citologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Agregação Celular , Proliferação de Células , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Retina/metabolismo , Peixe-Zebra/genética
2.
Development ; 144(6): 1097-1106, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28174240

RESUMO

To investigate the cell-cell interactions necessary for the formation of retinal layers, we cultured dissociated zebrafish retinal progenitors in agarose microwells. Within these wells, the cells re-aggregated within hours, forming tight retinal organoids. Using a Spectrum of Fates zebrafish line, in which all different types of retinal neurons show distinct fluorescent spectra, we found that by 48 h in culture, the retinal organoids acquire a distinct spatial organisation, i.e. they became coarsely but clearly laminated. Retinal pigment epithelium cells were in the centre, photoreceptors and bipolar cells were next most central and amacrine cells and retinal ganglion cells were on the outside. Image analysis allowed us to derive quantitative measures of lamination, which we then used to find that Müller glia, but not RPE cells, are essential for this process.


Assuntos
Neurônios/citologia , Retina/citologia , Peixe-Zebra/metabolismo , Animais , Agregação Celular , Células Cultivadas , Dissecação , Neuroglia/citologia , Epitélio Pigmentado da Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA