Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336207

RESUMO

Multidrug-resistant (MDR) Enterococcus faecium (Efm) infections continue to increase worldwide, although epidemiological studies remain scarce in lower middle-income countries. We aimed to explore which strains circulate in E. faecium causing human infections in Tunisian healthcare institutions in order to compare them with strains from non-human sources of the same country and finally to position them within the global E. faecium epidemiology by genomic analysis. Antibiotic susceptibility testing was performed and transfer of vancomycin-vanA and ampicillin-pbp5 resistance was performed by conjugation. WGS-Illumina was performed on Tunisian strains, and these genomes were compared with Efm genomes from other regions present in the GenBank/NCBI database (n = 10,701 Efm genomes available May 2021). A comparison of phenotypes with those predicted by the recent ResFinder 4.1-CGE webtool unveiled a concordance of 88%, with discordant cases being discussed. cgMLST revealed three clusters [ST18/CT222 (n = 13), ST17/CT948 strains (n = 6), and ST203/CT184 (n = 3)], including isolates from clinical, healthy-human, retail meat, and/or environmental sources in different countries over large time spans (10-12 years). Isolates within each cluster showed similar antibiotic resistance, bacteriocin, and virulence genetic patterns. pbp5-AmpR was transferred by VanA-AmpR-ST80 (clinical) and AmpR-ST17-Efm (bovine meat). Identical chromosomal pbp5-platforms carrying metabolic/virulence genes were identified between ST17/ST18 strains of clinical, farm animal, and retail meat sources. The overall results emphasize the role of high-resolution genotyping as provided by WGS in depicting the dispersal of MDR-Efm strains carrying relevant adaptive traits across different hosts/regions and the need of a One Health task force to curtail their spread.

2.
J Antimicrob Chemother ; 75(9): 2416-2423, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32607549

RESUMO

OBJECTIVES: poxtA is the most recently described gene conferring acquired resistance to linezolid, a relevant antibiotic for treating enterococcal infections. We retrospectively screened for poxtA in diverse enterococci and aimed to characterize its genetic/genomic contexts. METHODS: poxtA was screened by PCR in 812 enterococci from 458 samples (hospitals/healthy humans/wastewater/animals/retail food) obtained in Portugal/Angola/Tunisia (1996-2019). Antimicrobial susceptibility testing was performed for 13 antibiotics (EUCAST/CLSI). poxtA stability (∼500 generations), transfer (filter mating), clonality (SmaI-PFGE) and location (S1-PFGE/hybridization) were tested. WGS (Illumina-HiSeq) was performed for clonal representatives. RESULTS: poxtA was detected in Enterococcus faecium from six samples (1.3%): a healthy human (rectal swab) in Porto, Portugal (ST32/2001); four farm cows (milk) in Mateur, Tunisia (ST1058/2015); and a hospitalized patient (faeces) in Matosinhos, Portugal (ST1058/2015). All expressed resistance to linezolid (MIC = 8 mg/L), chloramphenicol, tetracycline and erythromycin, with variable resistance to ciprofloxacin and streptomycin. ST1058-poxtA-carrying isolates from Tunisia and Portugal differed by two SNPs and had similar plasmid content. poxtA, located in an IS1216-flanked Tn6246-like element, co-hybridized with fexB on one or more plasmids per isolate (one to three plasmids of 30-100 kb), was stable after several generations and transferred only from ST1058. ST1058 strains carried resistance/virulence genes (Efmqnr/acm) possibly induced under selective quinolone treatment. CONCLUSIONS: poxtA has been circulating in Portugal since at least 2001, corresponding to the oldest description worldwide to date. We also extend the reservoir of poxtA to bovines. The similar linezolid-resistant poxtA-carrying strains colonizing humans and livestock on different continents, and without a noticeable relationship, suggests a recent transmission event or convergent evolution of E. faecium populations in different hosts and geographic regions.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Angola , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana , Enterococcus faecalis , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Humanos , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Portugal/epidemiologia , Estudos Retrospectivos , Tunísia
3.
J Antimicrob Chemother ; 75(1): 30-35, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605129

RESUMO

OBJECTIVES: Increasing numbers of linezolid-resistant Enterococcus carrying optrA are being reported across different niches worldwide. We aimed to characterize the first optrA-carrying Enterococcus faecalis obtained from food-producing animals and retail meat samples in Tunisia. METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools. RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China. CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.


Assuntos
Animais Domésticos/microbiologia , Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/veterinária , Linezolida/farmacologia , Aves Domésticas/microbiologia , Animais , Galinhas , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/classificação , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Tunísia , Sequenciamento Completo do Genoma
4.
J Antimicrob Chemother ; 74(10): 2865-2869, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243458

RESUMO

OBJECTIVES: The epidemiology of Enterococcus resistant to priority antibiotics including linezolid has mainly been investigated in developed countries and especially in hospitals. We aimed to evaluate the contribution of different non-human reservoirs for the burden of MDR enterococci in Tunisia, where scarce data are available. METHODS: Samples (n = 287) were collected from urban wastewater (n = 57), retail meat (n = 29; poultry/bovine/ovine), milk (n = 89; bovine/ovine), farm animal faeces (n = 80; poultry/bovine/ovine) and pets (n = 32; rabbit/dogs/cats/birds) in different Tunisian regions (2014-17). They were plated onto Slanetz-Bartley agar after pre-enrichment without antibiotics. Standard methods were used for bacterial identification and characterization of antibiotic resistance and virulence genes (PCR), antibiotic susceptibility testing (disc diffusion/broth microdilution; EUCAST/CLSI) and clonality (SmaI-PFGE/MLST). RESULTS: All samples carried Enterococcus (n = 377 isolates) resistant to antibiotics considered to be critical or highly important by WHO. Even without antibiotic selection, 38% of Enterococcus faecalis (Efs) and 22% of Enterococcus faecium (Efm) were identified as MDR. Linezolid-resistant isolates (5%; MIC = 8 mg/L) comprised six poxtA-carrying Efm (cow milk), seven optrA-carrying Efs (chicken faeces/meat) and five Efm lacking cfr/optrA/poxtA (poultry/bovine/ovine/wastewater). Clinically relevant Efm clones (clade A1) were identified in animal/meat sources. Ampicillin resistance (1%) was confined to ST18/ST78-like MDR Efm clones from bovine meat/milk samples carrying relevant virulence markers (e.g. ptsD/IS16). CONCLUSIONS: This study provides evidence of the contribution of livestock and foodstuffs to the dispersal of acquired linezolid resistance genes including poxtA and optrA. We report the first poxtA-carrying Efm in Tunisia, and for the first time in bovine samples, stressing the urgent need for alternative measures to counteract the spread of linezolid-resistant enterococci globally.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Enterococcus/efeitos dos fármacos , Microbiologia de Alimentos , Infecções por Bactérias Gram-Positivas/veterinária , Linezolida/farmacologia , Fatores de Virulência/genética , Animais , Animais Domésticos , Meios de Cultura , Enterococcus/classificação , Enterococcus/genética , Enterococcus/isolamento & purificação , Microbiologia Ambiental , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Animais de Estimação , Reação em Cadeia da Polimerase , Tunísia
5.
J Antimicrob Chemother ; 72(12): 3245-3251, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029072

RESUMO

OBJECTIVES: Oxazolidinone resistance is a serious limitation in the treatment of MDR Enterococcus infections. Plasmid-mediated oxazolidinone resistance has been strongly linked to animals where the use of phenicols might co-select resistance to both antibiotic families. Our goal was to assess the diversity of genes conferring phenicol/oxazolidinone resistance among diverse enterococci and to characterize the optrA genetic environment. METHODS: Chloramphenicol-resistant isolates (>16 mg/L, n = 245) from different sources (hospitals/healthy humans/wastewaters/animals) in Portugal, Angola and Tunisia (1996-2016) were selected. Phenicol (eight cat variants, fexA, fexB) or phenicol + oxazolidinone [cfr, cfr(B), optrA] resistance genes were searched for by PCR. Susceptibility (disc diffusion/microdilution), filter mating, stability of antibiotic resistance (500 bacterial generations), plasmid typing (S1-PFGE/hybridization), MLST and WGS (Illumina-HiSeq) were performed for optrA-positive isolates. RESULTS: Resistance to phenicols (n = 181, 74%) and phenicols + oxazolidinones (n = 2, 1%) was associated with the presence of cat(A-8) (40%, predominant in hospitals and swine), cat(A-7) (29%, predominant in poultry and healthy humans), cat(A-9) (2%), fexB (2%) and fexA + optrA (1%). fexA and optrA genes were co-located in a transferable plasmid (pAF379, 72 918 bp) of two ST86 MDR Tunisian Enterococcus faecalis (wastewaters) carrying several putative virulence genes. MICs of chloramphenicol, linezolid and tedizolid were stably maintained at 64, 4 and 1 mg/L, respectively. The chimeric pAF379 comprised relics of genetic elements from different Gram-positive bacteria and origins (human/porcine). CONCLUSIONS: To the best of our knowledge, we report the first detection of optrA in an African country (Tunisia) within a transferable mosaic plasmid of different origins. Its identification in isolates from environmental sources is worrisome and alerts for the need of a concerted global surveillance on the occurrence and spread of optrA.


Assuntos
Farmacorresistência Bacteriana , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Ordem dos Genes , Genes Bacterianos , Plasmídeos/isolamento & purificação , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Cidades , DNA Bacteriano/genética , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Enterococcus faecalis/efeitos dos fármacos , Tipagem de Sequências Multilocus , Oxazolidinonas/farmacologia , Reação em Cadeia da Polimerase , Tunísia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA