Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Front Microbiol ; 14: 1253371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808297

RESUMO

Introduction: The ancient city of Tel Megiddo in the Jezreel Valley (Israel), which lasted from the Neolithic to the Iron Age, has been continuously excavated since 1903 and is now recognized as a World Heritage Site. The site features multiple ruins in various areas, including temples and stables, alongside modern constructions, and public access is allowed in designated areas. The site has been studied extensively since the last century; however, its microbiome has never been studied. We carried out the first survey of the microbiomes in Tel Megiddo. Our objectives were to study (i) the unique microbial community structure of the site, (ii) the variation in the microbial communities across areas, (iii) the similarity of the microbiomes to urban and archeological microbes, (iv) the presence and abundance of potential bio-corroding microbes, and (v) the presence and abundance of potentially pathogenic microbes. Methods: We collected 40 swab samples from ten major areas and identified microbial taxa using next-generation sequencing of microbial genomes. These genomes were annotated and classified taxonomically and pathogenetically. Results: We found that eight phyla, six of which exist in all ten areas, dominated the site (>99%). The relative sequence abundance of taxa varied between the ruins and the sampled materials and was assessed using all metagenomic reads mapping to a respective taxon. The site hosted unique taxa characteristic of the built environment and exhibited high similarity to the microbiome of other monuments. We identified acid-producing bacteria that may pose a risk to the site through biocorrosion and staining and thus pose a danger to the site's preservation. Differences in the microbiomes of the publicly accessible or inaccessible areas were insignificant; however, pathogens were more abundant in the former. Discussion: We found that Tel Megiddo combines microbiomes of arid regions and monuments with human pathogens. The findings shed light on the microbial community structures and have relevance for bio-conservation efforts and visitor health.

2.
Dis Model Mech ; 16(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525888

RESUMO

Glucocorticoid resistance is commonly observed in depression, and has been linked to reduced expression and/or function of the glucocorticoid receptor (NR3C1 in human, hereafter referred to as GR). Previous studies have shown that GR-mutant zebrafish exhibit behavioural abnormalities that are indicative of an affective disorder, suggesting that GR plays a role in brain function. We compared the brain methylomes and brain transcriptomes of adult wild-type and GR-mutant zebrafish, and identified 249 differentially methylated regions (DMRs) that are regulated by GR. These include a cluster of CpG sites within the first intron of fkbp5, the gene encoding the glucocorticoid-inducible heat shock protein co-chaperone Fkbp5. RNA-sequencing analysis revealed that genes associated with chaperone-mediated protein folding, the regulation of circadian rhythm and the regulation of metabolism are particularly sensitive to loss of GR function. In addition, we identified subsets of genes exhibiting GR-regulated transcription that are known to regulate behaviour, and are linked to unipolar depression and anxiety. Taken together, our results identify key biological processes and novel molecular mechanisms through which the GR is likely to mediate responses to stress in the adult zebrafish brain, and they provide further support for the zebrafish GR mutant as a model for the study of affective disorders.


Assuntos
Relógios Circadianos , Receptores de Glucocorticoides , Animais , Adulto , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Relógios Circadianos/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Encéfalo/metabolismo , Transtornos do Humor/metabolismo
3.
Nat Commun ; 14(1): 4008, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414832

RESUMO

Variability in disease severity caused by a microbial pathogen is impacted by each infection representing a unique combination of host and pathogen genomes. Here, we show that the outcome of invasive Streptococcus pyogenes infection is regulated by an interplay between human STING genotype and bacterial NADase activity. S. pyogenes-derived c-di-AMP diffuses via streptolysin O pores into macrophages where it activates STING and the ensuing type I IFN response. However, the enzymatic activity of the NADase variants expressed by invasive strains suppresses STING-mediated type I IFN production. Analysis of patients with necrotizing S. pyogenes soft tissue infection indicates that a STING genotype associated with reduced c-di-AMP-binding capacity combined with high bacterial NADase activity promotes a 'perfect storm' manifested in poor outcome, whereas proficient and uninhibited STING-mediated type I IFN production correlates with protection against host-detrimental inflammation. These results reveal an immune-regulating function for bacterial NADase and provide insight regarding the host-pathogen genotype interplay underlying invasive infection and interindividual disease variability.


Assuntos
NAD+ Nucleosidase , Streptococcus pyogenes , Humanos , Proteínas de Bactérias/genética , Genótipo , Macrófagos/microbiologia , NAD+ Nucleosidase/genética , Streptococcus pyogenes/genética
4.
iScience ; 25(11): 104993, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36299999

RESUMO

The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters.

5.
Cell Rep Methods ; 2(8): 100270, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046618

RESUMO

Radiocarbon dating is the gold standard in archeology to estimate the age of skeletons, a key to studying their origins. Many published ancient genomes lack reliable and direct dates, which results in obscure and contradictory reports. We developed the temporal population structure (TPS), a DNA-based dating method for genomes ranging from the Late Mesolithic to today, and applied it to 3,591 ancient and 1,307 modern Eurasians. TPS predictions aligned with the known dates and correctly accounted for kin relationships. TPS dating of poorly dated Eurasian samples resolved conflicting reports in the literature, as illustrated by one test case. We also demonstrated how TPS improved the ability to study phenotypic traits over time. TPS can be used when radiocarbon dating is unfeasible or uncertain or to develop alternative hypotheses for samples younger than 10,000 years ago, a limitation that may be resolved over time as ancient data accumulate.


Assuntos
Técnicas Genéticas , Datação Radiométrica , Datação Radiométrica/métodos , Esqueleto , Arqueologia/métodos
6.
Sci Rep ; 12(1): 14683, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038559

RESUMO

Principal Component Analysis (PCA) is a multivariate analysis that reduces the complexity of datasets while preserving data covariance. The outcome can be visualized on colorful scatterplots, ideally with only a minimal loss of information. PCA applications, implemented in well-cited packages like EIGENSOFT and PLINK, are extensively used as the foremost analyses in population genetics and related fields (e.g., animal and plant or medical genetics). PCA outcomes are used to shape study design, identify, and characterize individuals and populations, and draw historical and ethnobiological conclusions on origins, evolution, dispersion, and relatedness. The replicability crisis in science has prompted us to evaluate whether PCA results are reliable, robust, and replicable. We analyzed twelve common test cases using an intuitive color-based model alongside human population data. We demonstrate that PCA results can be artifacts of the data and can be easily manipulated to generate desired outcomes. PCA adjustment also yielded unfavorable outcomes in association studies. PCA results may not be reliable, robust, or replicable as the field assumes. Our findings raise concerns about the validity of results reported in the population genetics literature and related fields that place a disproportionate reliance upon PCA outcomes and the insights derived from them. We conclude that PCA may have a biasing role in genetic investigations and that 32,000-216,000 genetic studies should be reevaluated. An alternative mixed-admixture population genetic model is discussed.


Assuntos
Algoritmos , Genética Populacional , Animais , Artefatos , Humanos , Análise de Componente Principal
7.
Neuron ; 110(6): 992-1008.e11, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35045337

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Morte Celular/genética , Proteínas do Citoesqueleto/genética , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916285

RESUMO

Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.


Assuntos
Genoma Humano , Disrafismo Espinal/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Biologia de Sistemas , Fatores de Transcrição/genética
9.
BMC Genomics ; 22(1): 351, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001009

RESUMO

The past years have seen the rise of genomic biobanks and mega-scale meta-analysis of genomic data, which promises to reveal the genetic underpinnings of health and disease. However, the over-representation of Europeans in genomic studies not only limits the global understanding of disease risk but also inhibits viable research into the genomic differences between carriers and patients. Whilst the community has agreed that more diverse samples are required, it is not enough to blindly increase diversity; the diversity must be quantified, compared and annotated to lead to insight. Genetic annotations from separate biobanks need to be comparable and computable and to operate without access to raw data due to privacy concerns. Comparability is key both for regular research and to allow international comparison in response to pandemics. Here, we evaluate the appropriateness of the most common genomic tools used to depict population structure in a standardized and comparable manner. The end goal is to reduce the effects of confounding and learn from genuine variation in genetic effects on phenotypes across populations, which will improve the value of biobanks (locally and internationally), increase the accuracy of association analyses and inform developmental efforts.


Assuntos
Bancos de Espécimes Biológicos , Pandemias , Genética Populacional , Humanos , Privacidade
10.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34043940

RESUMO

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Assuntos
Farmacorresistência Bacteriana/genética , Metagenômica , Microbiota/genética , População Urbana , Biodiversidade , Bases de Dados Genéticas , Humanos
11.
Microbiome ; 9(1): 114, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016161

RESUMO

Recent advances in metagenomic technology and computational prediction may inadvertently weaken an individual's reasonable expectation of privacy. Through cross-kingdom genetic and metagenomic forensics, we can already predict at least a dozen human phenotypes with varying degrees of accuracy. There is also growing potential to detect a "molecular echo" of an individual's microbiome from cells deposited on public surfaces. At present, host genetic data from somatic or germ cells provide more reliable information than microbiome samples. However, the emerging ability to infer personal details from different microscopic biological materials left behind on surfaces requires in-depth ethical and legal scrutiny. There is potential to identify and track individuals, along with new, surreptitious means of genetic discrimination. This commentary underscores the need to update legal and policy frameworks for genetic privacy with additional considerations for the information that could be acquired from microbiome-derived data. The article also aims to stimulate ubiquitous discourse to ensure the protection of genetic rights and liberties in the post-genomic era. Video abstract.


Assuntos
Privacidade Genética , Privacidade , Genômica , Humanos , Metagenoma , Metagenômica
12.
Genes (Basel) ; 12(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916341

RESUMO

In the last 15 years or so, soft selective sweep mechanisms have been catapulted from a curiosity of little evolutionary importance to a ubiquitous mechanism claimed to explain most adaptive evolution and, in some cases, most evolution. This transformation was aided by a series of articles by Daniel Schrider and Andrew Kern. Within this series, a paper entitled "Soft sweeps are the dominant mode of adaptation in the human genome" (Schrider and Kern, Mol. Biol. Evolut. 2017, 34(8), 1863-1877) attracted a great deal of attention, in particular in conjunction with another paper (Kern and Hahn, Mol. Biol. Evolut. 2018, 35(6), 1366-1371), for purporting to discredit the Neutral Theory of Molecular Evolution (Kimura 1968). Here, we address an alleged novelty in Schrider and Kern's paper, i.e., the claim that their study involved an artificial intelligence technique called supervised machine learning (SML). SML is predicated upon the existence of a training dataset in which the correspondence between the input and output is known empirically to be true. Curiously, Schrider and Kern did not possess a training dataset of genomic segments known a priori to have evolved either neutrally or through soft or hard selective sweeps. Thus, their claim of using SML is thoroughly and utterly misleading. In the absence of legitimate training datasets, Schrider and Kern used: (1) simulations that employ many manipulatable variables and (2) a system of data cherry-picking rivaling the worst excesses in the literature. These two factors, in addition to the lack of negative controls and the irreproducibility of their results due to incomplete methodological detail, lead us to conclude that all evolutionary inferences derived from so-called SML algorithms (e.g., S/HIC) should be taken with a huge shovel of salt.


Assuntos
Adaptação Fisiológica , Algoritmos , Inteligência Artificial , Genética Populacional , Genoma Humano , Aprendizado de Máquina , Seleção Genética , Evolução Molecular , Deriva Genética , Humanos
15.
Genes (Basel) ; 12(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540853

RESUMO

Sudden infant death syndrome (SIDS) is the unexpected death of an infant under one year of age that remains unexplained after a thorough investigation. Despite SIDS remaining a diagnosis of exclusion with an unexplained etiology, it is widely accepted that SIDS can be caused by environmental and/or biological factors, with multiple underlying candidate genes. However, the lack of biomarkers raises questions as to why genetic studies on SIDS to date are unable to provide a clearer understanding of the disease etiology. We sought to improve the identification of SIDS-associated genes by reviewing the SIDS genetic literature and objectively categorizing and scoring the reported genes based on the strength of evidence (from C1 (high) to C5 (low)). This was followed by analyses of function, associations between genes, the enrichment of gene ontology (GO) terms, and pathways and gender difference in tissue gene expression. We constructed a curated database for SIDS gene candidates consisting of 109 genes, 14 of which received a category 4 (C4) and 95 genes received the lowest category of C5. That none of the genes was classified into the higher categories indicates the low level of supporting evidence. We found that genes of both scoring categories show distinct networks and are highly diverse in function and involved in many GO terms and pathways, in agreement with the perception of SIDS as a heterogeneous syndrome. Genes of both scoring categories are part of the cardiac system, muscle, and ion channels, whereas immune-related functions showed enrichment for C4 genes. A limited association was found with neural development. Overall, inconsistent reports and missing metadata contribute to the ambiguity of genetic studies. Considering those parameters could help improve the identification of at-risk SIDS genes. However, the field is still far from offering a full-pledged genetic test to identify at-risk infants and is still hampered with methodological challenges and misunderstandings of the vulnerabilities of vital biological mechanisms.


Assuntos
Biomarcadores , Redes Reguladoras de Genes/genética , Cardiopatias Congênitas/genética , Morte Súbita do Lactente/genética , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/genética , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Feminino , Ontologia Genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Masculino , Redes e Vias Metabólicas/genética , Morte Súbita do Lactente/patologia
16.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35136384

RESUMO

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Assuntos
COVID-19 , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Pandemias , RNA Viral , SARS-CoV-2/isolamento & purificação
17.
Cell Rep ; 33(9): 108456, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264630

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. CAV1 and CAV2 organize membrane lipid rafts (MLRs) important for cell signaling and neuronal survival, and overexpression of CAV1 ameliorates ALS phenotypes in vivo. Genome-wide association studies localize a large proportion of ALS risk variants within the non-coding genome, but further characterization has been limited by lack of appropriate tools. By designing and applying a pipeline to identify pathogenic genetic variation within enhancer elements responsible for regulating gene expression, we identify disease-associated variation within CAV1/CAV2 enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce CAV1/CAV2 expression in neurons. Additional enrichment of ALS-associated mutations within CAV1 exons positions CAV1 as an ALS risk gene. We propose CAV1/CAV2 overexpression as a personalized medicine target for ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Caveolina 1/genética , Animais , Caveolina 1/metabolismo , Predisposição Genética para Doença , Variação Genética , Genoma , Humanos
18.
Mayo Clin Proc ; 95(9): 1989-1999, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32861340

RESUMO

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has rapidly caused a global pandemic associated with a novel respiratory infection: coronavirus disease-19 (COVID-19). Angiotensin-converting enzyme-2 (ACE2) is necessary to facilitate SARS-CoV-2 infection, but-owing to its essential metabolic roles-it may be difficult to target it in therapies. Transmembrane protease serine 2 (TMPRSS2), which interacts with ACE2, may be a better candidate for targeted therapies. Using publicly available expression data, we show that both ACE2 and TMPRSS2 are expressed in many host tissues, including lung. The highest expression of ACE2 is found in the testes, whereas the prostate displays the highest expression of TMPRSS2. Given the increased severity of disease among older men with SARS-CoV-2 infection, we address the potential roles of ACE2 and TMPRSS2 in their contribution to the sex differences in severity of disease. We show that expression levels of ACE2 and TMPRSS2 are overall comparable between men and women in multiple tissues, suggesting that differences in the expression levels of TMPRSS2 and ACE2 in the lung and other non-sex-specific tissues may not explain the gender disparities in severity of SARS CoV-2. However, given their instrumental roles for SARS-CoV-2 infection and their pleiotropic expression, targeting the activity and expression levels of TMPRSS2 is a rational approach to treat COVID-19.


Assuntos
Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Serina Endopeptidases/genética , Fatores Sexuais , Enzima de Conversão de Angiotensina 2 , Betacoronavirus , COVID-19 , Feminino , Expressão Gênica , Frequência do Gene , Humanos , Pulmão , Masculino , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2
20.
Front Microbiol ; 11: 608101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519756

RESUMO

The rise of microbiomics and metagenomics has been driven by advances in genomic sequencing technology, improved microbial sampling methods, and fast-evolving approaches in bioinformatics. Humans are a host to diverse microbial communities in and on their bodies, which continuously interact with and alter the surrounding environments. Since information relating to these interactions can be extracted by analyzing human and environmental microbial profiles, they have the potential to be relevant to forensics. In this review, we analyzed over 100 papers describing forensic microbiome applications with emphasis on geolocation, personal identification, trace evidence, manner and cause of death, and inference of the postmortem interval (PMI). We found that although the field is in its infancy, utilizing microbiome and metagenome signatures has the potential to enhance the forensic toolkit. However, many of the studies suffer from limited sample sizes and model accuracies, and unrealistic environmental settings, leaving the full potential of microbiomics to forensics unexplored. It is unlikely that the information that can currently be elucidated from microbiomics can be used by law enforcement. Nonetheless, the research to overcome these challenges is ongoing, and it is foreseeable that microbiome-based evidence could contribute to forensic investigations in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA