Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(11): 105270, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304109

RESUMO

The seven-transmembrane superfamily member 3 protein (TM7SF3) is a p53-regulated homeostatic factor that attenuates cellular stress and the unfolded protein response. Here we show that TM7SF3 localizes to nuclear speckles; eukaryotic nuclear bodies enriched in splicing factors. This unexpected location for a trans -membranal protein enables formation of stable complexes between TM7SF3 and pre-mRNA splicing factors including DHX15, LARP7, HNRNPU, RBM14, and HNRNPK. Indeed, TM7SF3 regulates alternative splicing of >330 genes, mainly at the 3'end of introns by directly modulating the activity of splicing factors such as HNRNPK. These effects are observed both in cell lines and primary human pancreatic islets. Accordingly, silencing of TM7SF3 results in differential expression of 1465 genes (about 7% of the human genome); with 844 and 621 genes being up- or down-regulated, respectively. Our findings implicate TM7SF3, as a resident protein of nuclear speckles and suggest a role for seven-transmembrane proteins as regulators of alternative splicing.

2.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499033

RESUMO

Ricin, a protein derived from the seeds of the castor bean plant (Ricinus communis), is a highly lethal toxin that inhibits protein synthesis, resulting in cell death. The widespread availability of ricin, its ease of extraction and its extreme toxicity make it an ideal agent for bioterrorism and self-poisoning. Thus, a rapid, sensitive and reliable method for ricin identification in clinical samples is required for applying appropriate and timely medical intervention. However, this goal is challenging due to the low predicted toxin concentrations in bio-fluids, accompanied by significantly high matrix interferences. Here we report the applicability of a sensitive, selective, rapid, simple and antibody-independent assay for the identification of ricin in body fluids using mass spectrometry (MS). The assay involves lectin affinity capturing of ricin by easy-to-use commercial lactose-agarose (LA) beads, following by tryptic digestion and selected marker identification using targeted LC-MS/MS (Multiple Reaction Monitoring) analysis. This enables ricin identification down to 5 ng/mL in serum samples in 2.5 h. To validate the assay, twenty-four diverse naive- or ricin-spiked serum samples were evaluated, and both precision and accuracy were determined. A real-life test of the assay was successfully executed in a challenging clinical scenario, where the toxin was identified in an abdominal fluid sample taken 72 h post self-injection of castor beans extraction in an eventual suicide case. This demonstrates both the high sensitivity of this assay and the extended identification time window, compared to similar events that were previously documented. This method developed for ricin identification in clinical samples has the potential to be applied to the identification of other lectin toxins.


Assuntos
Cromatografia Líquida , Ricina , Espectrometria de Massas em Tandem , Humanos , Biomarcadores/sangue , Limite de Detecção , Reprodutibilidade dos Testes , Ricina/sangue , Ricina/intoxicação , Fatores de Tempo , Fluxo de Trabalho
3.
Sci Rep ; 10(1): 9007, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488096

RESUMO

Ricin, a highly lethal plant-derived toxin, is a potential biological threat agent due to its high availability, ease of production and the lack of approved medical countermeasures for post-exposure treatment. To date, no specific ricin receptors were identified. Here we show for the first time, that the low density lipoprotein receptor-related protein-1 (LRP1) is a major target molecule for binding of ricin. Pretreating HEK293 acetylcholinesterase-producer cells with either anti-LRP1 antibodies or with Receptor-Associated Protein (a natural LRP1 antagonist), or using siRNA to knock-down LRP1 expression resulted in a marked reduction in their sensitivity towards ricin. Binding assays further demonstrated that ricin bound exclusively to the cluster II binding domain of LRP1, via the ricin B subunit. Ricin binding to the cluster II binding domain of LRP1 was significantly reduced by an anti-ricin monoclonal antibody, which confers high-level protection to ricin pulmonary-exposed mice. Finally, we tested the contribution of LRP1 receptor to ricin intoxication of lung cells derived from mice. Treating these cells with anti-LRP1 antibody prior to ricin exposure, prevented their intoxication. Taken together, our findings clearly demonstrate that the LRP1 receptor plays an important role in ricin-induced pulmonary intoxications.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/efeitos dos fármacos , Ricina/metabolismo , Ricina/toxicidade , Acetilcolinesterase/metabolismo , Animais , Anticorpos/farmacologia , Anticorpos Neutralizantes/farmacologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Pulmão/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos , Microscopia Confocal , Ricina/farmacocinética , Ricina/intoxicação
4.
Antibodies (Basel) ; 9(1)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041179

RESUMO

Abrin and ricin are potent AB toxins, which are considered biological threats. To date, there are no approved treatments against abrin or ricin intoxications. Previously, we showed that the administration of polyclonal anti-abrin antibodies to mice that were intranasally exposed to abrin, even very late post-exposure, conferred an exceedingly high-level of protection, while following ricin intoxication, similar treatment with anti-ricin antibodies resulted in negligible survival rates. To probe this unexpected difference in protection ability, we first examined whether the efficient anti-abrin-induced protection was due to neutralization of the A-subunit responsible for the catalytic effect, or of the B-subunit, which enables binding/internalization, by evaluating the protection conferred by antibodies directed against one of the two subunits. To this end, we generated and immunized rabbits with chimeric toxins containing a single abrin subunit, AabrinBricin in which abrin A-subunit was linked to ricin B-subunit, and AricinBabrin in which ricin A-subunit is linked to abrin B-subunit. Here, we show that antibodies raised against either AabrinBricin or AricinBabrin conferred exceptionally high protection levels to mice following intranasal exposure to a a lethal dose of abrin, suggesting that the high level of protection conferred by anti-abrin antibodies is not related to the neutralization of a particular subunit.

5.
J Mass Spectrom ; 55(1): e4482, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31782217

RESUMO

Ricin, a plant-derived toxin extracted from the seeds of Ricinus communis (castor bean plant), is one of the most toxic proteins known. Ricin's high toxicity, widespread availability, and ease of its extraction make it a potential agent for bioterrorist attacks. Most ricin detection methods are based on immunoassays. These methods may suffer from low efficiency in matrices containing interfering substances, or from false positive results due to antibody cross reactivity, with highly homologous proteins. In this study, we have developed a simple, rapid, sensitive, and selective mass spectrometry assay, for the identification of ricin in complex environmental samples. This assay involves three main stages: (a) Ricin affinity capture by commercial lactamyl-agarose (LA) beads. (b) Tryptic digestion. (c) LC-MS/MS (MRM) analysis of tryptic fragments. The assay was validated using 60 diverse environmental samples such as soil, asphalt, and vegetation, taken from various geographic regions. The assay's selectivity was established in the presence of high concentrations of competing lectin interferences. Based on our findings, we have defined strict criteria for unambiguous identification of ricin. Our novel method, which combines affinity capture beads followed by MRM-based analysis, enabled the identification of 1 ppb ricin spiked into complex environmental matrices. This methodology has the potential to be extended for the identification of ricin in body fluids from individuals exposed (deliberately or accidentally) to the toxin, contaminated food or for the detection of the entire family of RIP-II toxins, by applying multiplex format.


Assuntos
Lactamas/química , Extratos Vegetais/química , Ricina/análise , Sefarose/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Geografia , Hidrocarbonetos/química , Microesferas , Ricinus/química , Sementes/química , Solo/química
6.
Diabetes ; 66(7): 1879-1889, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28424159

RESUMO

Cellular stress and proinflammatory cytokines induce phosphorylation of insulin receptor substrate (IRS) proteins at Ser sites that inhibit insulin and IGF-I signaling. We therefore examined the effects of mutation of five "inhibitory" Ser phosphorylation sites on IRS2 function in transgenic mice that overexpress, selectively in pancreatic ß-cells, either wild-type (WT) or a mutated IRS2 protein (IRS25A). Islets size, number, and mRNA levels of catalase and superoxide dismutase were increased, whereas those of nitric oxide synthase were decreased, in 7- to 10-week-old IRS25A-ß mice compared with IRS2WT-ß mice. However, glucose homeostasis and insulin secretion in IRS25A-ß mice were impaired when compared with IRS2WT-ß mice or to nontransgenic mice. This was associated with reduced mRNA levels of Glut2 and islet ß-cell transcription factors such as Nkx6.1 and MafA Similarly, components mediating the unfolded protein response were decreased in islets of IRS25A-ß mice in accordance with their decreased insulin secretion. The beneficial effects of IRS25A on ß-cell proliferation and ß-cell transcription factors were evident only in 5- to 8-day-old mice. These findings suggest that elimination of inhibitory Ser phosphorylation sites of IRS2 exerts short-term beneficial effects in vivo; however, their sustained elimination leads to impaired ß-cell function.


Assuntos
Retroalimentação Fisiológica , Proteínas Substratos do Receptor de Insulina/genética , Insulina/metabolismo , RNA Mensageiro/metabolismo , Animais , Glicemia/metabolismo , Catalase/genética , Catalase/metabolismo , Proliferação de Células/genética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina , Ilhotas Pancreáticas/patologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Tamanho do Órgão , Fosforilação , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
7.
Cell Death Differ ; 24(1): 132-143, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27740623

RESUMO

Earlier reported small interfering RNA (siRNA) high-throughput screens, identified seven-transmembrane superfamily member 3 (TM7SF3) as a novel inhibitor of pancreatic ß-cell death. Here we show that TM7SF3 maintains protein homeostasis and promotes cell survival through attenuation of ER stress. Overexpression of TM7SF3 inhibits caspase 3/7 activation. In contrast, siRNA-mediated silencing of TM7SF3 accelerates ER stress and activation of the unfolded protein response (UPR). This involves inhibitory phosphorylation of eukaryotic translation initiation factor 2α activity and increased expression of activating transcription factor-3 (ATF3), ATF4 and C/EBP homologous protein, followed by induction of apoptosis. This process is observed both in human pancreatic islets and in a number of cell lines. Some of the effects of TM7SF3 silencing are evident both under basal conditions, in otherwise untreated cells, as well as under different stress conditions induced by thapsigargin, tunicamycin or a mixture of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta and interferon gamma). Notably, TM7SF3 is a downstream target of p53: activation of p53 by Nutlin increases TM7SF3 expression in a time-dependent manner, although silencing of p53 abrogates this effect. Furthermore, p53 is found in physical association with the TM7SF3 promoter. Interestingly, silencing of TM7SF3 promotes p53 activity, suggesting the existence of a negative-feedback loop, whereby p53 promotes expression of TM7SF3 that acts to restrict p53 activity. Our findings implicate TM7SF3 as a novel p53-regulated pro-survival homeostatic factor that attenuates the development of cellular stress and the subsequent induction of the UPR.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Tapsigargina/toxicidade , Fator de Transcrição CHOP/metabolismo , Tunicamicina/toxicidade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
8.
Clin Infect Dis ; 61(12): e58-61, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26420800

RESUMO

Botulinum toxin was detected in patient serum using Endopeptidase-mass-spectrometry assay, although all conventional tests provided negative results. Antitoxin was administered, resulting in patient improvement. Implementing this highly sensitive and rapid assay will improve preparedness for foodborne botulism and deliberate exposure.


Assuntos
Botulismo/diagnóstico , Endopeptidases/sangue , Espectrometria de Massas/métodos , Antitoxinas/administração & dosagem , Botulismo/terapia , Diagnóstico Precoce , Humanos , Lactente , Masculino , Soro/química , Fatores de Tempo , Resultado do Tratamento
9.
PLoS One ; 4(9): e7023, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19759820

RESUMO

Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD(50) of at least 10(7) cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.


Assuntos
Proteínas de Bactérias/fisiologia , Lipoproteínas/fisiologia , Peste/genética , Fatores de Virulência/genética , Yersinia pestis/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Genoma Bacteriano , Lipoproteínas/genética , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Células-Tronco
10.
Infect Immun ; 74(6): 3239-50, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16714551

RESUMO

The enteropathogenic Yersinia strains are known to downregulate signaling pathways in macrophages by effectors of the type III secretion system, in which YopJ/YopP plays a crucial role. The adverse effects of Yersinia pestis, the causative agent of plague, were examined by infecting J774A.1 cells, RAW264.7 cells, and primary murine macrophages with the EV76 strain and with the fully virulent Kimberley53 strain. Y. pestis exerts YopJ-dependent suppression of tumor necrosis factor alpha secretion and phosphorylation of mitogen-activated protein kinases and thus resembles enteropathogenic Yersinia. However, Y. pestis is less able to activate caspases, to suppress NF-kappaB activation, and to induce apoptosis in macrophages than the high-virulence Y. enterocolitica WA O:8 strain. These differences appear to be related to lower efficiency of YopJ effector translocation by Y. pestis. The efficiencies of effector translocation and of apoptosis induction can be enhanced either by using a high bacterial load in a synchronized infection or by overexpressing exogenous YopJ in Y. pestis. Replacing YopJ with the homologous Y. enterocolitica effector YopP can further enhance these effects. Overexpression of YopP in a yopJ-deleted Y. pestis background leads to rapid and effective translocation into target cells, providing Y. pestis with the high cytotoxic potential of Y. enterocolitica WA O:8. We suggest that the relative inferiority of Y. pestis in triggering cell death in macrophages may be advantageous for its in vivo propagation in the early stages of infection.


Assuntos
Apoptose , Proteínas de Bactérias/fisiologia , Macrófagos/microbiologia , Yersinia pestis/patogenicidade , Animais , Caspase 3 , Caspase 7 , Caspases/metabolismo , Linhagem Celular , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , Transporte Proteico , Virulência , Yersinia enterocolitica/patogenicidade
11.
J Biol Chem ; 280(48): 39897-906, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16188881

RESUMO

Protective antigen (PA) is a central virulence factor of Bacillus anthracis and a key component in anthrax vaccines. PA binds to target cell receptors, is cleaved by the furin protease, self-aggregates to heptamers, and finally internalizes as a complex with either lethal or edema factors. Under mild room temperature storage conditions, PA cytotoxicity decreased (t(1/2) approximately 7 days) concomitant with the generation of new acidic isoforms, probably through deamidation of Asn residues. Ranking all 68 Asn residues in PA based on their predicted deamidation rates revealed five residues with half-lives of <60 days, and these residues were further analyzed: Asn10 in the 20-kDa region, Asn162 at P6 vicinal to the furin cleavage site, Asn306 in the pro-pore translocation loop, and both Asn713 and Asn719 in the receptor-binding domain. We found that PA underwent spontaneous deamidation at Asn162 upon storage concomitant with decreased susceptibility to furin. A panel of model synthetic furin substrates was used to demonstrate that Asn162 deamidation led to a 20-fold decrease in the bimolecular rate constant (k(cat)/Km) of proteolysis due to the new negatively charged residue at P6 in the furin recognition sequence. Furthermore, reduced PA cytotoxicity correlated with a decrease in PA cell binding and also with deamidation of Asn713 and Asn719. On the other hand, neither deamidation of Asn10 or Asn306 nor impairment of heptamerization could be observed upon prolonged PA storage. We suggest that PA inactivation during storage is associated with susceptible deamidation sites, which are intimately involved in both mechanisms of PA cleavage by furin and PA-receptor binding.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Sequência de Aminoácidos , Animais , Asparagina/química , Sítios de Ligação , Biotinilação , Células CHO , Sobrevivência Celular , Cricetinae , Dimerização , Eletroforese em Gel de Poliacrilamida , Furina/química , Focalização Isoelétrica , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Tripsina/química
12.
Proteomics ; 4(3): 677-91, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14997491

RESUMO

Bacillus anthracis is the causative agent of anthrax disease. Improvement of existing anthrax vaccines, which are currently based on the administration of Protective Antigen (the highly immunogenic nontoxic subunit of the bacterial toxin) may entail other bacterial immunogenic elements, part of which are predicted to reside on the surface of bacterial cells. In the present study, membranal proteins extracted from a stationary-phase culture of a nonvirulent B. anthracis strain, devoid of the native virulence plasmids pXO1 and pXO2, were separated by two-dimensional electrophoresis (2-DE) and a characteristic protein map was defined. The proteomic analysis allowed matrix-assisted laser desorption/ionization-time of flight mass spectrometry-assisted identification of 86 protein spots which represent the product of 30 individual open reading frames (ORF). Among these, a prevalent class of proteins was the S-layer proteins (which were found to represent more than 75% of the B. anthracis membranal fraction) and proteins containing S-layer homology (SLH)-membranal localization domains. Five novel SLH proteins, previously inferred only from bioinformatic ORF analysis (draft genome sequence), were identified and one was shown to be a highly abundant membranal protein. Western blots of the 2-DE gels were probed with sera from convalescent rabbits and guinea pigs infected with virulent B. anthracis (Vollum strain). This analysis revealed that B. anthracis immune animals exhibit antibodies against at least 14 distinct membranal proteins present in the 2-DE map, establishing that these proteins are expressed in vivo and are able to elicit an immune response. The identification of the protein components of the B. anthracis membranal fraction, as well as the establishment of their potential immunogenicity, underscore the strength of the proteomic approach for identifying molecules which may serve for further analysis of immune and protective abilities.


Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/química , Peptídeos/química , Proteoma , Sequência de Aminoácidos , Animais , Western Blotting , Membrana Celular/metabolismo , Cromossomos/ultraestrutura , DNA/metabolismo , Bases de Dados como Assunto , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Cobaias , Dados de Sequência Molecular , Fases de Leitura Aberta , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteoma/metabolismo , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/farmacologia , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA