Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 1039993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479083

RESUMO

Suppressive myeloid cells, including monocyte and neutrophil populations, play a vital role in the metastatic cascade and can inhibit the anti-tumor function of cytotoxic T-cells. Cargo-free polymeric nanoparticles (NPs) have been shown to modulate innate immune cell responses in multiple pathologies of aberrant inflammation. Here, we test the hypothesis that the intravenous administration of drug-free NPs in the 4T1 murine model of metastatic triple-negative breast cancer can reduce metastatic colonization of the lungs, the primary metastatic site, by targeting the pro-tumor immune cell mediators of metastatic progression. In vivo studies demonstrated that NP administration reprograms the immune milieu of the lungs and reduces pulmonary metastases. Single-cell RNA sequencing of the lungs revealed that intravenous NP administration alters myeloid cell phenotype and function, skewing populations toward inflammatory, anti-tumor phenotypes and away from pro-tumor phenotypes. Monocytes, neutrophils, and dendritic cells in the lungs of NP-treated mice upregulate gene pathways associated with IFN signaling, TNF signaling, and antigen presentation. In a T-cell deficient model, NP administration failed to abrogate pulmonary metastases, implicating the vital role of T-cells in the NP-mediated reduction of metastases. NPs delivered as an adjuvant therapy, following surgical resection of the primary tumor, led to clearance of established pulmonary metastases in all treated mice. Collectively, these results demonstrate that the in vivo administration of cargo-free NPs reprograms myeloid cell responses at the lungs and promotes the clearance of pulmonary metastases in a method of action dependent on functional T-cells.

2.
Front Immunol ; 13: 887649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059473

RESUMO

Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.


Assuntos
Melanoma Experimental , Nanopartículas , Animais , Humanos , Imunoterapia/métodos , Interleucina-15 , Melanoma Experimental/terapia , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Nucleotidiltransferases/metabolismo , Microambiente Tumoral
3.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737459

RESUMO

Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.


Assuntos
COVID-19 , Doenças Transmissíveis , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Humanos , Pulmão/patologia , Camundongos , Monócitos , SARS-CoV-2
4.
J Immunol ; 209(3): 465-475, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35725270

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic ß cells, inflammatory lesions within islets (insulitis), and ß cell loss. We previously showed that Ag-specific tolerance targeting single ß cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Nanopartículas , Animais , Diabetes Mellitus Experimental/patologia , Epitopos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas
5.
J Cancer ; 13(6): 1933-1944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399717

RESUMO

In this study, we evaluated the ability of negatively charged bio-degradable nanoparticles, ONP- 302, to inhibit tumor growth. Therapeutic treatment with ONP-302 in vivo resulted in a marked delay in tumor growth in three different syngeneic tumor models in immunocompetent mice. ONP- 302 efficacy persisted with depletion of CD8+ T cells in immunocompetent mice and also was effective in immune deficient mice. Examination of ONP-302 effects on components of the tumor microenvironment (TME) were explored. ONP-302 treatment caused a gene expression shift in TAMs toward the pro-inflammatory M1 type and substantially inhibited the expression of genes associated with the pro-tumorigenic function of CAFs. ONP-302 also induced apoptosis in CAFs in the TME. Together, these data support further development of ONP-302 as a novel first-in- class anti-cancer therapeutic that can be used as a single-agent as well as in combination therapies for the treatment of solid tumors due to its ability to modulate the TME.

6.
Gastroenterology ; 161(1): 66-80.e8, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33722583

RESUMO

BACKGROUND & AIMS: In celiac disease (CeD), gluten induces immune activation, leading to enteropathy. TAK-101, gluten protein (gliadin) encapsulated in negatively charged poly(dl-lactide-co-glycolic acid) nanoparticles, is designed to induce gluten-specific tolerance. METHODS: TAK-101 was evaluated in phase 1 dose escalation safety and phase 2a double-blind, randomized, placebo-controlled studies. Primary endpoints included pharmacokinetics, safety, and tolerability of TAK-101 (phase 1) and change from baseline in circulating gliadin-specific interferon-γ-producing cells at day 6 of gluten challenge, in patients with CeD (phase 2a). Secondary endpoints in the phase 2a study included changes from baseline in enteropathy (villus height to crypt depth ratio [Vh:Cd]), and frequency of intestinal intraepithelial lymphocytes and peripheral gut-homing T cells. RESULTS: In phase 2a, 33 randomized patients completed the 14-day gluten challenge. TAK-101 induced an 88% reduction in change from baseline in interferon-γ spot-forming units vs placebo (2.01 vs 17.58, P = .006). Vh:Cd deteriorated in the placebo group (-0.63, P = .002), but not in the TAK-101 group (-0.18, P = .110), although the intergroup change from baseline was not significant (P = .08). Intraepithelial lymphocyte numbers remained equal. TAK-101 reduced changes in circulating α4ß7+CD4+ (0.26 vs 1.05, P = .032), αEß7+CD8+ (0.69 vs 3.64, P = .003), and γδ (0.15 vs 1.59, P = .010) effector memory T cells. TAK-101 (up to 8 mg/kg) induced no clinically meaningful changes in vital signs or routine clinical laboratory evaluations. No serious adverse events occurred. CONCLUSIONS: TAK-101 was well tolerated and prevented gluten-induced immune activation in CeD. The findings from the present clinical trial suggest that antigen-specific tolerance was induced and represent a novel approach translatable to other immune-mediated diseases. ClinicalTrials.gov identifiers: NCT03486990 and NCT03738475.


Assuntos
Doença Celíaca/imunologia , Gliadina/imunologia , Tolerância Imunológica/imunologia , Nanopartículas/administração & dosagem , Doença Celíaca/patologia , Método Duplo-Cego , Gliadina/administração & dosagem , Glicolatos/administração & dosagem , Humanos , Infusões Intravenosas
7.
Comput Struct Biotechnol J ; 14: 319-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594979

RESUMO

Many metrics, including metabolic profiles, have been used to analyze cell health and optimize productivity. In this study, we investigated the ability of a lipid supplement to increase protein yield. At a concentration of 1% (v/v) the lipid supplement caused a significant increase in protein titer (1118 ± 65.4 ng 10(5) cells(- 1) days(- 1)) when compared to cultures grown in the absence of supplementation (819.3 ± 38.1 ng 10(5) cells(- 1) days(- 1); p < 0.05). This equated to a 37% increase in productivity. Furthermore, metabolic profiles of ammonia, glutamate, lactate, and glucose were not significantly altered by the polar lipid supplement. In a separate set of experiments, using the supplement as a feed resulted in 2 notable effects. The first was a 25% increase in protein titer. The second was an extension of peak protein production from 1 day to 2 days. These results suggest that lipid supplementation is a promising avenue for enhancing protein production. In addition, our results also suggest that an increase in protein production may not necessarily require a change in the metabolic state of the cells.

8.
J Neuroimmunol ; 213(1-2): 91-9, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19535153

RESUMO

Chemokines are a superfamily of chemotactic cytokines that play an important role in leukocyte trafficking and have been implicated as functional mediators of immunopathology in experimental autoimmune encephalomyelitis (EAE). In the present study, we investigated the role of the CCL20 receptor, CCR6, in chronic EAE. After immunization with myelin oligodendrocyte glycoprotein 35-55 in CFA, CCR6(-/-) mice developed a significantly more severe chronic EAE as compared to wild type immunized animals. CCR6 expression was not required by T cells to induce EAE. Measurement of peripheral T cell responses showed differences in IFN-gamma and IL-17 responses between CCR6(-/-) and wild type mice. At the time when CCR6(-/-) mice showed significantly more severe chronic EAE there was a significant decrease in PD-L1-expressing mDC in the spleens and no differences in Foxp3 Treg. Furthermore, add back of mDC with increased PD-L1 expression to CCR6(-/-) mice reduced the severe chronic EAE disease phase to that of wild type controls. The results suggest a role for CCR6-expressing PDL1(+) mDC in regulating EAE progression.


Assuntos
Antígeno B7-1/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Glicoproteínas de Membrana/metabolismo , Peptídeos/metabolismo , Receptores CCR6/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígeno B7-H1 , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Feminino , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Knockout , Baço/citologia , Baço/imunologia , Baço/metabolismo
9.
J Immunol ; 180(11): 7376-84, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18490737

RESUMO

Experimental autoimmune encephalomyelitis is a T cell-mediated demyelinating disease of the CNS that serves as a model for the human disease multiple sclerosis. Increased expression of the chemokine CCL2 in the CNS has been demonstrated to be important in the development of demyelinating disease presumably by attracting inflammatory cells. However, the mechanism of how CCL2 regulates disease pathogenesis has not been fully elucidated. Using radiation bone marrow chimeric mice we demonstrated that optimum disease was achieved when CCL2 was glia derived. Furthermore, CNS production of CCL2 resulted in the accumulation of iNOS-producing CD11b(+)CD11c(+) dendritic cells and TNF-producing macrophages important for demyelination. Lack of glial-derived CCL2 production did not influence experimental autoimmune encephalomyelitis by altering either Th1 or Th17 cells, as there were no differences in these populations in the CNS or periphery between groups. These results demonstrate that the glial-derived CCL2 is important for the attraction of TNF- and iNOS-producing dendritic cells and effector macrophages to the CNS for development of subsequent autoimmune disease.


Assuntos
Sistema Nervoso Central/metabolismo , Quimiocina CCL2/metabolismo , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Macrófagos/imunologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Quimiocina CCL2/deficiência , Quimiocina CCL2/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neuroglia/metabolismo , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Viral Immunol ; 20(1): 19-33, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17425418

RESUMO

Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a murine model for multiple sclerosis, involves recruitment of T cells and macrophages to the CNS after infection. We hypothesized that CCR2, the only known receptor for CCL2, would be required for TMEV-induced demyelinating disease development because of its role in macrophage recruitment. TMEV-infected SJL CCR2 knockout (KO) mice showed decreased long-term clinical disease severity and less demyelination compared with controls. Flow cytometric data indicated that macrophages (CD45(high) CD11b(+) ) in the CNS of TMEV-infected CCR2 KO mice were decreased compared with control mice throughout disease. CD4(+) and CD8(+) T cell percentages in the CNS of TMEV-infected control and CCR2 KO mice were similar over the course of disease. There were no apparent differences between CCR2 KO and control peripheral immune responses. The frequency of interferon-gamma-producing T cells in response to proteolipid protein 139-151 in the CNS was also similar during the autoimmunity stage of TMEV-induced demyelinating disease. These data suggest that CCR2 is important for development of clinical disease by regulating macrophage accumulation after TMEV infection.


Assuntos
Infecções por Cardiovirus/complicações , Doenças Desmielinizantes/etiologia , Receptores de Quimiocinas/fisiologia , Theilovirus , Animais , Encéfalo/patologia , Encéfalo/virologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Interferon gama/biossíntese , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2 , Theilovirus/imunologia , Carga Viral
11.
Glia ; 49(3): 360-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15538753

RESUMO

The immunologic privilege of the central nervous system (CNS) makes it crucial that CNS resident cells be capable of responding rapidly to infection. Astrocytes have been reported to express Toll-like receptors (TLRs), hallmark pattern recognition receptors of the innate immune system, and respond to their ligation with cytokine production. Astrocytes have also been reported to respond to cytokines of the adaptive immune system with the induction of antigen presentation functions. Here we have compared the ability of TLR stimuli and the adaptive immune cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) to induce a variety of immunologic functions of astrocytes. We show that innate signals LPS- and poly I:C lead to stronger upregulation of TLRs and production of the cytokines IL-6 and TNF-alpha as well as innate immune effector molecules IFN-alpha4, IFN-beta, and iNOS compared with cytokine-stimulated astrocytes. Both innate stimulation and adaptive stimulation induce similar expression of the chemokines CCL2, CCL3, and CCL5, as well as similar enhancement of adhesion molecule ICAM-1 and VCAM-1 expression by astrocytes. Stimulation with adaptive immune cytokines, however, was unique in its ability to induce upregulation of MHC II and the functional ability of astrocytes to activate CD4(+) T cells. These results indicate potentially important and changing roles for astrocytes during the progression of CNS infection.


Assuntos
Adaptação Biológica/imunologia , Astrócitos/imunologia , Diferenciação Celular/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Citocinas/farmacologia , DNA Complementar/biossíntese , DNA Complementar/imunologia , Feminino , Imunidade Inata/imunologia , Camundongos , Gravidez
12.
J Leukoc Biol ; 77(2): 229-37, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15539456

RESUMO

CC chemokine ligand 2 (CCL2)/monocyte chemotactic protein-1, a member of the CC chemokine family, is a chemoattractant for monocytes and T cells through interaction with its receptor CCR2. In the present study, we examined a T helper cell type 1 (Th1)-dependent disease, proteolipid protein-induced experimental autoimmune encephalomyelitis, in a transgenic mouse line that constitutively expressed low levels of CCL2 in the central nervous system (CNS) under control of the astrocyte-specific glial fibrillary acidic protein promoter. CCL2 transgenic mice developed significantly milder clinical disease than littermate controls. As determined by flow cytometry, mononuclear cell infiltrates in the CNS tissues of CCL2 transgenic and littermate-control mice contained equal numbers of CD4+ and CD8+ T cells, and the CCL2 transgenic mice showed an enhanced number of CNS-infiltrating monocytes. CNS antigen-specific T cells from CCL2 transgenic mice produced markedly less interferon-gamma. Overexpression of CCL2 in the CNS resulted in decreased interleukin-12 receptor expression by antigen-specific T cells. Collectively, these results indicate that sustained, tissue-specific expression of CCL2 in vivo down-regulates the Th1 autoimmune response, culminating in milder clinical disease.


Assuntos
Sistema Nervoso Central/imunologia , Quimiocina CCL2/genética , Encefalomielite Autoimune Experimental/prevenção & controle , Animais , Sistema Nervoso Central/metabolismo , Quimiocina CCL2/biossíntese , Quimiocina CCL2/imunologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/química , Proteína Proteolipídica de Mielina/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
13.
J Neurovirol ; 9(6): 623-36, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14602575

RESUMO

CCL2 is a member of the CC chemokine family that mediates the migration and recruitment of monocytes and T cells and has been identified in the central nervous system (CNS) during several neuroinflammatory diseases. In order to examine the biological effect of constitutive CCL2 expression in the CNS, the authors engineered a mouse that expressed CCL2 in the CNS under control of the human glial fibrillary acidic protein (hGFAP) promoter. The results demonstrated that transgenic expression of CCL2 in the CNS resulted in diffuse CNS monocyte infiltration and accumulation. Transgenic CCL2 expression did not alter normal development, differentiation, or function of T cells. There was no evidence of overt CNS disease or other pathologic phenotype when mice were left unchallenged with antigen or uninfected. However, when CCL2 transgenic mice were given a peripheral challenge of lipopolysaccharide (LPS), an inflammatory infiltrate with organized perivascular lesions developed. Infection of the transgenic mice with Theiler's murine encephalomyelitis virus (TMEV) resulted in accelerated onset and increased severity of clinical and histological disease. These results suggest that CCL2 expression in the CNS is a major pathogenic factor that drives macrophage accumulation in the development of CNS inflammatory disease.


Assuntos
Infecções por Cardiovirus/virologia , Quimiocina CCL2/genética , Doenças Desmielinizantes/virologia , Animais , Infecções por Cardiovirus/patologia , Doenças Desmielinizantes/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Theilovirus
14.
Immunol Res ; 25(2): 167-75, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11999170

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a T cell mediated demyelinating disease of the central nervous system (CNS) that serves as a model for multiple sclerosis (MS). Insights into the pathogenesis of this model may help scientists understand the human disease and aid in rational drug discovery. In this review we summarize the role of chemokines and chemokine receptors in disease pathogenesis and suggest a pathway of events that leads to demyelination and subsequent clinical disease manifestation.


Assuntos
Quimiocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Receptores de Quimiocinas/imunologia , Animais , Encefalomielite Autoimune Experimental/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA