Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Environ Qual ; 50(6): 1440-1451, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34647326

RESUMO

Microbial degradation of subsurface organic contaminants is often hindered by the low availability of both contaminants and nutrients, especially phosphorus (P). The use of activated carbon and traditional P fertilizers to overcome these challenges has proved ineffective; therefore, we sought to find an innovative and effective solution. By heating bone meal-derived organic residues in water in a closed reactor, we synthesized nonporous colloids composed of aromatic and aliphatic structures linked to P groups. X-ray absorption near edge spectroscopy analysis revealed that the materials contain mostly bioavailable forms of P (i.e., adsorbed P and magnesium-bearing brushite). The capacity of the materials to adsorb organic contaminants was investigated using benzene and batch isotherm experiments. The adsorption isotherms were fitted to the linearized Freundlich model; isotherm capacity (logKF ) values for the materials ranged between 1.6 and 2.8 µg g-1 . These results indicate that the colloidal materials have a high affinity for organic contaminants. This, coupled with their possession of bioavailable P, should make them effective amendments for in situ groundwater bioremediation. Also, the materials' chemical properties suggest that they are not recalcitrant, implying that they will not become potential contaminants when released into the environment.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Nutrientes , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 38(2): 448-459, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30525224

RESUMO

Previous studies have suggested that understanding soil metal speciation, rather than relying solely on total metal content, can improve the accuracy and utility of contaminated site risk assessments. Because soil properties and reaction time can alter metal speciation, speciation should influence metal bioaccessibility. For example, under gastrointestinal conditions, it is expected that metal species will differ in bioaccessibility depending on their stability in acidic pH environments. We studied the links between metal speciation and bioaccessibility. A combination of synchrotron-based X-ray diffraction and X-ray absorption near edge structure (XANES) was used to identify the zinc (Zn) speciation in spiked and smelter-affected soils. After conducting in vitro digestion tests on the soil samples, XANES and linear combination fitting were carried out on the residual pellets to identify the species of Zn that remained after digesting the soils in the simulated gastric and duodenal fluids. The metal species that were not present in the residual pellets were inferred to have been dissolved and, thus, more bioaccessible. Sphalerite (ZnS), ZnO, and outer-sphere Zn contributed more to Zn bioaccessibility than franklinite (ZnFe2 O4 ) and Zn incorporated into a hydroxy interlayer mineral (Zn-HIM). The bioaccessibility of Zn-aluminum layered double hydroxides (Zn-Al-LDH) was found to be inversely proportional to its residence time in soil. It was also observed that the relatively high pH of the duodenum favors metal reprecipitation and readsorption, leading to a reduction in bioaccessible metal concentration. These results imply that metal speciation mainly controls metal bioaccessibility. Environ Toxicol Chem 2019;38:448-459. © 2018 SETAC.


Assuntos
Metalurgia , Modelos Biológicos , Poluentes do Solo/análise , Solo/química , Zinco/análise , Disponibilidade Biológica , Duodeno/química , Monitoramento Ambiental , Suco Gástrico/química , Humanos , Secreções Intestinais/química , Manitoba , Poluentes do Solo/metabolismo , Estômago/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA