Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105458, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949231

RESUMO

Age-related bone loss is associated with decreased bone formation, increased bone resorption, and accumulation of bone marrow fat. During aging, differentiation potential of bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) is shifted toward an adipogenic lineage and away from an osteogenic lineage. In aged bone tissue, we previously observed pathological opening of the mitochondrial permeability transition pore (MPTP) which leads to mitochondrial dysfunction, oxidative phosphorylation uncoupling, and cell death. Cyclophilin D (CypD) is a mitochondrial protein that facilitates opening of the MPTP. We found earlier that CypD is downregulated during osteogenesis of BMSCs leading to lower MPTP activity and, thus, protecting mitochondria from dysfunction. However, during adipogenesis, a fate alternative to osteogenesis, the regulation of mitochondrial function and CypD expression is still unclear. In this study, we observed that BMSCs have increased CypD expression and MPTP activity, activated glycolysis, and fragmented mitochondrial network during adipogenesis. Adipogenic C/EBPα acts as a transcriptional activator of expression of the CypD gene, Ppif, during this process. Inflammation-associated transcription factor NF-κB shows a synergistic effect with C/EBPα inducing Ppif expression. Overall, we demonstrated changes in mitochondrial morphology and function during adipogenesis. We also identified C/EBPα as a transcriptional activator of CypD. The synergistic activation of CypD by C/EBPα and the NF-κB p65 subunit during this process suggests a potential link between adipogenic signaling, inflammation, and MPTP gain-of-function, thus altering BMSC fate during aging.


Assuntos
Adipogenia , Proteína alfa Estimuladora de Ligação a CCAAT , Poro de Transição de Permeabilidade Mitocondrial , Envelhecimento , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Glicólise , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Peptidil-Prolil Isomerase F/genética , Peptidil-Prolil Isomerase F/metabolismo , Fator de Transcrição RelA
2.
Curr Osteoporos Rep ; 21(5): 540-551, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542684

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize the recently published scientific literature regarding the effects of mitochondrial function and mitochondrial genome mutations on bone phenotype and aging. RECENT FINDINGS: While aging and sex steroid levels have traditionally been considered the most important risk factors for development of osteoporosis, mitochondrial function and genetics are being increasingly recognized as important determinants of bone health. Recent studies indicate that mitochondrial genome variants found in different human populations determine the risk of complex degenerative diseases. We propose that osteoporosis should be among such diseases. Studies have shown the deleterious effects of mitochondrial DNA mutations and mitochondrial dysfunction on bone homeostasis. Mediators of such effects include oxidative stress, mitochondrial permeability transition, and dysregulation of autophagy. Mitochondrial health plays an important role in bone homeostasis and aging, and understanding underlying mechanisms is critical in leveraging this relationship clinically for therapeutic benefit.


Assuntos
DNA Mitocondrial , Osteoporose , Humanos , DNA Mitocondrial/genética , Envelhecimento/genética , Mitocôndrias/genética , Mutação/genética , Osteoporose/genética , Fenótipo
3.
Cell Death Dis ; 14(7): 428, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452070

RESUMO

The efficient clearance of dead and dying cells, efferocytosis, is critical to maintain tissue homeostasis. In the bone marrow microenvironment (BMME), this role is primarily fulfilled by professional bone marrow macrophages, but recent work has shown that mesenchymal stromal cells (MSCs) act as a non-professional phagocyte within the BMME. However, little is known about the mechanism and impact of efferocytosis on MSCs and on their function. To investigate, we performed flow cytometric analysis of neutrophil uptake by ST2 cells, a murine bone marrow-derived stromal cell line, and in murine primary bone marrow-derived stromal cells. Transcriptional analysis showed that MSCs possess the necessary receptors and internal processing machinery to conduct efferocytosis, with Axl and Tyro3 serving as the main receptors, while MerTK was not expressed. Moreover, the expression of these receptors was modulated by efferocytic behavior, regardless of apoptotic target. MSCs derived from human bone marrow also demonstrated efferocytic behavior, showing that MSC efferocytosis is conserved. In all MSCs, efferocytosis impaired osteoblastic differentiation. Transcriptional analysis and functional assays identified downregulation in MSC mitochondrial function upon efferocytosis. Experimentally, efferocytosis induced mitochondrial fission in MSCs. Pharmacologic inhibition of mitochondrial fission in MSCs not only decreased efferocytic activity but also rescued osteoblastic differentiation, demonstrating that efferocytosis-mediated mitochondrial remodeling plays a critical role in regulating MSC differentiation. This work describes a novel function of MSCs as non-professional phagocytes within the BMME and demonstrates that efferocytosis by MSCs plays a key role in directing mitochondrial remodeling and MSC differentiation. Efferocytosis by MSCs may therefore be a novel mechanism of dysfunction and senescence. Since our data in human MSCs show that MSC efferocytosis is conserved, the consequences of MSC efferocytosis may impact the behavior of these cells in the human skeleton, including bone marrow remodeling and bone loss in the setting of aging, cancer and other diseases.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Fagocitose , Mitocôndrias/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo
4.
Cells ; 12(11)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296594

RESUMO

Mitochondrial dysfunction is observed in various conditions, from metabolic syndromes to mitochondrial diseases. Moreover, mitochondrial DNA (mtDNA) transfer is an emerging mechanism that enables the restoration of mitochondrial function in damaged cells. Hence, developing a technology that facilitates the transfer of mtDNA can be a promising strategy for the treatment of these conditions. Here, we utilized an ex vivo culture of mouse hematopoietic stem cells (HSCs) and succeeded in expanding the HSCs efficiently. Upon transplantation, sufficient donor HSC engraftment was attained in-host. To assess the mitochondrial transfer via donor HSCs, we used mitochondrial-nuclear exchange (MNX) mice with nuclei from C57BL/6J and mitochondria from the C3H/HeN strain. Cells from MNX mice have C57BL/6J immunophenotype and C3H/HeN mtDNA, which is known to confer a higher stress resistance to mitochondria. Ex vivo expanded MNX HSCs were transplanted into irradiated C57BL/6J mice and the analyses were performed at six weeks post transplantation. We observed high engraftment of the donor cells in the bone marrow. We also found that HSCs from the MNX mice could transfer mtDNA to the host cells. This work highlights the utility of ex vivo expanded HSC to achieve the mitochondrial transfer from donor to host in the transplant setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
5.
J Bone Miner Res ; 38(4): 522-540, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36779737

RESUMO

The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Camundongos , Animais , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Peptidil-Prolil Isomerase F , Envelhecimento
6.
Bone Rep ; 16: 101594, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35669927

RESUMO

Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.

7.
Elife ; 112022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35635445

RESUMO

Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas , Poro de Transição de Permeabilidade Mitocondrial , Osteogênese , Peptidil-Prolil Isomerase F , Proteínas Smad , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Peptidil-Prolil Isomerase F/genética , Peptidil-Prolil Isomerase F/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Osteogênese/fisiologia , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo
8.
Cardiovasc Res ; 118(13): 2819-2832, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34677619

RESUMO

AIMS: Diastolic Ca release (DCR) from sarcoplasmic reticulum (SR) Ca release channel ryanodine receptor (RyR2) has been linked to multiple cardiac pathologies, but its exact role in shaping divergent cardiac pathologies remains unclear. We hypothesize that the SR-mitochondria interplay contributes to disease phenotypes by shaping Ca signalling. METHODS AND RESULTS: A genetic model of catecholaminergic polymorphic ventricular tachycardia (CPVT2 model of CASQ2 knockout) and a pre-diabetic cardiomyopathy model of fructose-fed mice (FFD), both marked by DCR, are employed in this study. Mitochondria Ca (mCa) is modulated by pharmacologically targeting mitochondria Ca uniporter (MCU) or permeability transition pore (mPTP), mCa uptake, and extrusion mechanisms, respectively. An MCU activator abolished Ca waves in CPVT2 but exacerbated waves in FFD cells. Mechanistically this is ascribed to mitochondria's function as a Ca buffer or source of reactive oxygen species (mtROS) to exacerbate RyR2 functionality, respectively. Enhancing mCa uptake reduced and elevated mtROS production in CPVT2 and FFD, respectively. In CPVT2, mitochondria took up more Ca in permeabilized cells, and had higher level of mCa content in intact cells vs. FFD. Conditional ablation of MCU in the CPVT2 model caused lethality and cardiac remodelling, but reduced arrhythmias in the FFD model. In parallel, CPVT2 mitochondria also employ up-regulated mPTP-mediated Ca efflux to avoid mCa overload, as seen by elevated incidence of MitoWinks (an indicator of mPTP-mediated Ca efflux) vs. FFD. Both pharmacological and genetic inhibition of mPTP promoted mtROS production and exacerbation of myocyte Ca handling in CPVT2. Further, genetic inhibition of mPTP exacerbated arrhythmias in CPVT2. CONCLUSION: In contrast to FFD, which is more susceptible to mtROS-dependent RyR2 leak, in CPVT2 mitochondria buffer SR-derived DCR to mitigate Ca-dependent pathological remodelling and rely on mPTP-mediated Ca efflux to avoid mCa overload. SR-mitochondria interplay contributes to the divergent pathologies by disparately shaping intracellular Ca signalling.


Assuntos
Retículo Sarcoplasmático , Taquicardia Ventricular , Animais , Camundongos , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Frutose , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética , Poro de Transição de Permeabilidade Mitocondrial
9.
Sci Rep ; 11(1): 19114, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580378

RESUMO

Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.


Assuntos
Consolidação da Fratura/efeitos da radiação , Fraturas Ósseas/terapia , Magnetoterapia/métodos , Mitocôndrias/efeitos da radiação , Animais , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Fraturas Ósseas/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Mitocôndrias/fisiologia , Osteoblastos/fisiologia , Osteoblastos/efeitos da radiação , Osteogênese/efeitos da radiação , Fosforilação Oxidativa/efeitos da radiação
10.
Spine J ; 21(7): 1205-1216, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677096

RESUMO

BACKGROUND CONTEXT: Back and neck pain secondary to disc degeneration is a major public health burden. There is a need for therapeutic treatments to restore intervertebral disc (IVD) composition and function. PURPOSE: To quantify ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens collected from patients undergoing surgery for disc degeneration, to correlate ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens to the 5-level Pfirrmann MRI grading system, and to compare ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression between cervical and lumbar degenerative disc specimens. STUDY DESIGN: An immunohistochemical study assessing ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in human control and degenerative IVD specimens. METHODS: Human IVD specimens were collected from surgical patients who underwent discectomy and interbody fusion at our institution between 1/2015 and 8/2017. Each patient underwent MRI prior to surgery. The degree of disc degeneration was measured according to the 5-level Pfirrmann MRI grading system. Patients were categorized into either the 1) control group (Pfirrmann grades I-II) or 2) degenerative group (Pfirrmann grades III-V). Histology slides of the collected IVD specimens were prepared and immunohistochemical staining was performed to assess ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in the control and degenerative specimens. Expression levels were also correlated to the Pfirrmann criteria. Lastly, the degenerative specimens were stratified according to their vertebral level and expression levels between the degenerative lumbar and cervical discs were compared. RESULTS: Fifty-two patients were enrolled; however, 2 control and 2 degenerative patients were excluded due to incomplete data sets. Of the remaining 48 patients, there were 12 control and 36 degenerative specimens. Degenerative specimens had increased expression levels of BMP-2 (p=.0006) and pSMAD1/5/8 (p<.0001). Pfirrmann grade 3 (p=.0365) and grade 4 (p=.0008) discs had significantly higher BMP-2 expression as compared to grade 2 discs. Pfirrmann grade 4 discs had higher pSMAD1/5/8 expression as compared to grade 2 discs (p<.0001). There were no differences in ALK3 or MMP-13 expression between the control and degenerative discs (p>.05). Stratifying the degenerative specimens according to their vertebral level showed no significant differences in expression levels between the lumbar and cervical discs (p>.05). CONCLUSIONS: BMP-2 and pSMAD1/5/8 signaling activity was significantly upregulated in the human degenerative specimens, while ALK3 and MMP-13 expression were not significantly changed. The expression levels of BMP-2 and pSMAD1/5/8 correlate positively with the degree of disc degeneration measured according to the Pfirrmann MRI grading system. CLINICAL SIGNIFICANCE: BMP-SMAD signaling represents a promising therapeutic target to restore IVD composition and function in the setting of disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética
11.
Stem Cells Dev ; 30(3): 149-162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307974

RESUMO

Osteogenic differentiation, the process by which bone marrow mesenchymal stem/stromal (a.k.a. skeletal stem) cells and osteoprogenitors form osteoblasts, is a critical event for bone formation during development, fracture repair, and tissue maintenance. Extra cellular and intracellular signaling pathways triggering osteogenic differentiation are relatively well known; however, the ensuing change in cell energy metabolism is less clearly defined. We and others have previously reported activation of mitochondria during osteogenic differentiation. To further elucidate the involved bioenergetic mechanisms and triggers, we tested the effect of osteogenic media containing ascorbate and ß-glycerol phosphate, or various osteogenic hormones and growth factors on energy metabolism in long bone (ST2)- and calvarial bone (MC3T3-E1)-derived osteoprogenitors. We show that osteogenic media and differentiation factors, Wnt3a and BMP2, stimulate mitochondrial oxidative phosphorylation (OxPhos) with little effect on glycolysis. The activation of OxPhos occurs acutely, suggesting a metabolic signaling change rather than protein expression change. To this end, we found that the observed mitochondrial activation is Akt dependent. Akt is activated by osteogenic media, Wnt3a, and BMP2, leading to increased phosphorylation of various mitochondrial Akt targets, a phenomenon known to stimulate OxPhos. In sum, our data provide comprehensive analysis of cellular bioenergetics during osteoinduction in cells of two different origins (mesenchyme vs neural crest) and identify Wnt3a and BMP2 as physiological stimulators of mitochondrial respiration through Akt activation.


Assuntos
Diferenciação Celular/fisiologia , Metabolismo Energético/fisiologia , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Western Blotting , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Mitocôndrias/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Proteína Wnt3A/metabolismo , Proteína Wnt3A/farmacologia
12.
PLoS One ; 15(11): e0241998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166330

RESUMO

Spinal fusion is a commonly performed orthopedic surgery. Autologous bone graft obtained from the iliac crest is frequently employed to perform spinal fusion. Osteogenic bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) are believed to be responsible for new bone formation and development of the bridging bone during spinal fusion, as these cells are located in both the graft and at the site of fusion. Our previous work revealed the importance of mitochondrial oxidative metabolism in osteogenic differentiation of BMSCs. Our objective here was to determine the impact of BMSC oxidative metabolism on osseointegration of the graft during spinal fusion. The first part of the study was focused on correlating oxidative metabolism in bone graft BMSCs to radiographic outcomes of spinal fusion in human patients. The second part of the study was focused on mechanistically proving the role of BMSC oxidative metabolism in osseointegration during spinal fusion using a genetic mouse model. Patients' iliac crest-derived graft BMSCs were identified by surface markers. Mitochondrial oxidative function was detected in BMSCs with the potentiometric probe, CMXRos. Spinal fusion radiographic outcomes, determined by the Lenke grade, were correlated to CMXRos signal in BMSCs. A genetic model of high oxidative metabolism, cyclophilin D knockout (CypD KO), was used to perform spinal fusion in mice. Graft osseointegration in mice was assessed with micro-computed tomography. Our study revealed that higher CMXRos signal in patients' BMSCs correlated with a higher Lenke grade. Mice with higher oxidative metabolism (CypD KO) had greater mineralization of the spinal fusion bridge, as compared to the control mice. We therefore conclude that higher oxidative metabolism in BMSCs correlates with better spinal fusion outcomes in both human patients and in a mouse model. Altogether, our study suggests that promoting oxidative metabolism in osteogenic cells could improve spinal fusion outcomes for patients.


Assuntos
Osseointegração , Estresse Oxidativo , Fusão Vertebral , Adolescente , Adulto , Idoso , Animais , Transplante Ósseo/métodos , Criança , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fusão Vertebral/métodos , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Coluna Vertebral/cirurgia , Adulto Jovem
13.
J Bone Miner Res ; 35(12): 2432-2443, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32729639

RESUMO

Cellular bioenergetics is a promising new therapeutic target in aging, cancer, and diabetes because these pathologies are characterized by a shift from oxidative to glycolytic metabolism. We have previously reported such glycolytic shift in aged bone as a major contributor to bone loss in mice. We and others also showed the importance of oxidative phosphorylation (OxPhos) for osteoblast differentiation. It is therefore reasonable to propose that stimulation of OxPhos will have bone anabolic effect. One strategy widely used in cancer research to stimulate OxPhos is inhibition of glycolysis. In this work, we aimed to evaluate the safety and efficacy of pharmacological inhibition of glycolysis to stimulate OxPhos and promote osteoblast bone-forming function and bone anabolism. We tested a range of glycolytic inhibitors including 2-deoxyglucose, dichloroacetate, 3-bromopyruvate, and oxamate. Of all the studied inhibitors, only a lactate dehydrogenase (LDH) inhibitor, oxamate, did not show any toxicity in either undifferentiated osteoprogenitors or osteoinduced cells in vitro. Oxamate stimulated both OxPhos and osteoblast differentiation in osteoprogenitors. In vivo, oxamate improved bone mineral density, cortical bone architecture, and bone biomechanical strength in both young and aged C57BL/6J male mice. Oxamate also increased bone formation by osteoblasts without affecting bone resorption. In sum, our work provided a proof of concept for the use of anti-glycolytic strategies in bone and identified a small molecule LDH inhibitor, oxamate, as a safe and efficient bone anabolic agent. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Anabolizantes , L-Lactato Desidrogenase , Animais , Glicólise , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa
14.
Bone ; 137: 115391, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360587

RESUMO

Bone fracture is accompanied by trauma, mechanical stresses, and inflammation - conditions known to induce the mitochondrial permeability transition. This phenomenon occurs due to opening of the mitochondrial permeability transition pore (MPTP) promoted by cyclophilin D (CypD). MPTP opening leads to more inflammation, cell death and potentially to disruption of fracture repair. Here we performed a proof-of-concept study and tested a hypothesis that protecting mitochondria from MPTP opening via inhibition of CypD improves fracture repair. First, our in vitro experiments indicated pro-osteogenic and anti-inflammatory effects in osteoprogenitors upon CypD knock-out or pharmacological inhibition. Using a bone fracture model in mice, we observed that bone formation and biomechanical properties of repaired bones were significantly increased in CypD knock-out mice or wild type mice treated with a CypD inhibitor, NIM811, when compared to controls. These effects were evident in young male but not female mice, however in older (13 month-old) female mice bone formation was also increased during fracture repair. In contrast to global CypD knock-out, mesenchymal lineage-specific (Prx1-Cre driven) CypD deletion did not result in improved fracture repair. Our findings implicate MPTP in bone fracture and suggest systemic CypD inhibition as a modality to promote fracture repair.


Assuntos
Fraturas Ósseas , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Animais , Peptidil-Prolil Isomerase F , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial
15.
J Biol Chem ; 293(41): 16019-16027, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30150300

RESUMO

Bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) can differentiate into osteoblasts (OBs), adipocytes, or chondrocytes. As BMSCs undergo OB differentiation, they up-regulate mitochondrial oxidative phosphorylation (OxPhos). Here, we investigated the mechanism(s) connecting mitochondrial OxPhos to OB differentiation. First, we found that treating BMSC-like C3H10T1/2 cells with an OxPhos inhibitor reduces their osteogenic potential. Interestingly, ATP levels were not reduced, as glycolysis compensated for the decreased OxPhos. Thus, mitochondria support OB differentiation not only by supplying ATP, but also by other mechanisms. To uncover these mechanisms, we stimulated OxPhos in C3H10T1/2 cells by replacing media glucose with galactose and observed that this substitution increases both OxPhos and osteogenesis even in the absence of osteoinducers. ß-Catenin, an important signaling pathway in osteogenesis, was found to be responsive to OxPhos stimulation. ß-Catenin activity is maintained by acetylation, and mitochondria generate the acetyl donor acetyl-CoA, which upon entering the Krebs cycle is converted to citrate capable of exiting mitochondria. Cytosolic citrate is converted back to acetyl-CoA by ATP citrate lyase (ACLY). We found that inhibiting ACLY with SB204990 (SB) reverses the galactose-induced ß-catenin activity and OB differentiation. This suggested that acetylation is involved in ß-catenin activation after forced OxPhos stimulation, and using immunoprecipitation, we indeed detected SB-sensitive ß-catenin acetylation. Both ß-catenin acetylation and activity increased during osteoinduction coincident with OxPhos activation. These findings suggest that active mitochondria support OB differentiation by promoting ß-catenin acetylation and thus activity.


Assuntos
Diferenciação Celular , Mitocôndrias/metabolismo , Osteogênese/fisiologia , beta Catenina/metabolismo , Células 3T3 , Acetilação , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Animais , Células da Medula Óssea/citologia , Proliferação de Células , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Osteoblastos/metabolismo , Fosforilação Oxidativa , Transdução de Sinais , Via de Sinalização Wnt
16.
J Cell Biochem ; 118(12): 4383-4393, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28444901

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent progenitors capable of differentiation into osteoblasts and can potentially serve as a source for cell-based therapies for bone repair. Many factors have been shown to regulate MSC differentiation into the osteogenic lineage such as the Cyclooxygenase-2 (COX2)/Prostaglandin E2 (PGE2) signaling pathway that is critical for bone repair. PGE2 binds four different receptors EP1-4. While most studies focus on the role PGE2 receptors EP2 and EP4 in MSC differentiation, our study focuses on the less studied, receptor subtype 1 (EP1) in MSC function. Recent work from our laboratory showed that EP1-/- mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation, suggesting that EP1 is a negative regulator of bone formation. In this study, the regulation of MSC osteogenic differentiation by EP1 receptor was investigated using EP1 genetic deletion in EP1-/- mice. The data suggest that EP1 receptor functions to maintain MSCs in an undifferentiated state. Loss of the EP1 receptor changes MSC characteristics and permits stem cells to undergo more rapid osteogenic differentiation. Notably, our studies suggest that EP1 receptor regulates MSC differentiation by modulating MSC bioenergetics, preventing the shift to mitochondrial oxidative phosphorylation by maintaining high Hif1α activity. Loss of EP1 results in inactivation of Hif1α, increased oxygen consumption rate and thus increased osteoblast differentiation. J. Cell. Biochem. 118: 4383-4393, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Metabolismo Energético , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Consumo de Oxigênio , Receptores de Prostaglandina E Subtipo EP1/genética
17.
PLoS One ; 11(5): e0155709, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27183225

RESUMO

Pathogenic factors associated with aging, such as oxidative stress and hormone depletion converge on mitochondria and impair their function via opening of the mitochondrial permeability transition pore (MPTP). The MPTP is a large non-selective pore regulated by cyclophilin D (CypD) that disrupts mitochondrial membrane integrity. MPTP involvement has been firmly established in degenerative processes in heart, brain, and muscle. Bone has high energy demands and is therefore expected to be highly sensitive to mitochondrial dysfunction. Despite this, the role of mitochondria and the MPTP in bone maintenance and bone pathology has not been elucidated. Our goal was to determine whether mitochondria are impaired in aging bone and to see if protecting mitochondria from MPTP opening via CypD deletion protects against bone loss. We found that bone mass, strength, and formation progressively decline over the course of 18 months in C57BL/6J mice. Using metabolomics and electron microscopy, we determined that oxidative metabolism is impaired in aging bone leading to a glycolytic shift, imbalance in nucleotides, and decreased NAD+/NADH ratio. Mitochondria in osteocytes appear swollen which is a major marker of MPTP opening. CypD deletion by CypD knockout mouse model (CypD KO) protects against bone loss in 13- and 18-month-old mice and prevents decline in bone formation and mitochondrial changes observed in wild type C57BL/6J mice. Together, these data demonstrate that mitochondria are impaired in aging bone and that CypD deletion protects against this impairment to prevent bone loss. This implicates CypD-regulated MPTP and mitochondrial dysfunction in the impairment of bone cells and in aging-related bone loss. Our findings suggest mitochondrial metabolism as a new target for bone therapeutics and inhibition of CypD as a novel strategy against bone loss.


Assuntos
Osso e Ossos/metabolismo , Ciclofilinas/deficiência , Resistência à Doença/genética , Predisposição Genética para Doença , Osteoporose/genética , Osteoporose/metabolismo , Fatores Etários , Animais , Fenômenos Biomecânicos , Densidade Óssea , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Peptidil-Prolil Isomerase F , Modelos Animais de Doenças , Masculino , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Fenótipo , Microtomografia por Raio-X
18.
Stem Cells Dev ; 25(2): 114-22, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26487485

RESUMO

There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Metabolismo Energético/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Mitocôndrias/metabolismo
19.
PLoS One ; 9(11): e113330, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25427064

RESUMO

Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica no Desenvolvimento , Mitocôndrias Cardíacas/genética , Fatores Etários , Animais , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Miocárdio/metabolismo , Fosforilação Oxidativa , Multimerização Proteica
20.
J Cell Biochem ; 113(4): 1282-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22109788

RESUMO

Osteosarcoma is a devastating tumor of bone, primarily affecting adolescents. Osteosarcoma tumors are notoriously radioresistant. Radioresistant cancers, including osteosarcoma, typically exhibit a considerable potential for relapse and development of metastases following treatment. Relapse and metastatic potential can, in part, be due to a specific radioresistant subpopulation of cells with stem-like characteristics, cancer stem cells, which maintain the capacity to regenerate entire tumors. In the current study, we have investigated whether in vitro treatments with parthenolide, a naturally occurring small molecule that interferes with NF-κB signaling and has various other effects, will re-sensitize cancer stem cells and the entire cell population to radiotherapy in osteosarcoma. Our results indicate that parthenolide and ionizing radiation synergistically induce cell death in LM7 osteosarcoma cells. Importantly, the combination treatment results in a significant reduction in the viability of both the overall population of osteosarcoma cells and the cancer stem cell subpopulation. This effect is dependent on the ability of parthenolide to induce oxidative stress. Therefore, as a supplement to current multimodal therapy, parthenolide may sensitize osteosarcoma tumors to radiation and greatly reduce the prevalence of relapse and metastatic progression.


Assuntos
Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Tolerância a Radiação , Sesquiterpenos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA