RESUMO
The WWE domain is a relatively under-researched domain found in twelve human proteins and characterized by a conserved tryptophan-tryptophan-glutamate (WWE) sequence motif. Six of these WWE domain-containing proteins also contain domains with E3 ubiquitin ligase activity. The general recognition of poly-ADP-ribosylated substrates by WWE domains suggests a potential avenue for development of Proteolysis-Targeting Chimeras (PROTACs). Here, we present novel crystal structures of the HUWE1, TRIP12, and DTX1 WWE domains in complex with PAR building blocks and their analogs, thus enabling a comprehensive analysis of the PAR binding site structural diversity. Furthermore, we introduce a versatile toolbox of biophysical and biochemical assays for the discovery and characterization of novel WWE domain binders, including fluorescence polarization-based PAR binding and displacement assays, 15N-NMR-based binding affinity assays and 19F-NMR-based competition assays. Through these assays, we have characterized the binding of monomeric iso-ADP-ribose (iso-ADPr) and its nucleotide analogs with the aforementioned WWE proteins. Finally, we have utilized the assay toolbox to screen a small molecule fragment library leading to the successful discovery of novel ligands targeting the HUWE1 WWE domain.
Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Humanos , Ligantes , Ligação Proteica , Sítios de Ligação , Domínios Proteicos , Modelos Moleculares , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Cristalografia por Raios X , Descoberta de Drogas/métodosRESUMO
Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.
Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pteridinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pteridinas/farmacologia , Pteridinas/química , Pteridinas/síntese química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Linhagem Celular TumoralRESUMO
Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.
Assuntos
Tirosina Quinase da Agamaglobulinemia , Pirofosfatases , Humanos , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Estrutura-Atividade , Cristalografia por Raios X , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Pirazóis/metabolismo , Piperidinas/farmacologia , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/síntese química , Descoberta de Drogas , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Adenina/análogos & derivados , Adenina/química , Adenina/farmacologia , Adenina/metabolismo , Modelos Moleculares , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese químicaRESUMO
Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.
Assuntos
Diabetes Mellitus Tipo 2 , Iohexol/análogos & derivados , Piridazinas , Humanos , Quinases Dyrk , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Piridazinas/químicaRESUMO
The past few years have seen exciting discoveries in the area of tyrosine kinase structural biology including the first high resolution models of full-length receptor tyrosine kinases and new mechanistic insights into the structural mechanisms of receptor tyrosine kinase activation. Despite being a mature area of research, the application of new technologies continues to advance our understanding. In this article we highlight a selection of recent studies that illustrate the current areas of research interest, focussing in particular on the exciting progress made possible by cryo-electron-microscopy. These new discoveries may herald a wave of new design ideas for therapeutics acting through novel mechanisms.
Assuntos
Proteínas Tirosina Quinases , Receptores Proteína Tirosina Quinases , Receptores Proteína Tirosina Quinases/química , Biologia Molecular , Microscopia Crioeletrônica , TirosinaRESUMO
AlphaFold2 and related computational tools have greatly aided studies of structural biology through their ability to accurately predict protein structures. In the present work, we explored AF2 structural models of the 17 canonical members of the human PARP protein family and supplemented this analysis with new experiments and an overview of recent published data. PARP proteins are typically involved in the modification of proteins and nucleic acids through mono or poly(ADP-ribosyl)ation, but this function can be modulated by the presence of various auxiliary protein domains. Our analysis provides a comprehensive view of the structured domains and long intrinsically disordered regions within human PARPs, offering a revised basis for understanding the function of these proteins. Among other functional insights, the study provides a model of PARP1 domain dynamics in the DNA-free and DNA-bound states and enhances the connection between ADP-ribosylation and RNA biology and between ADP-ribosylation and ubiquitin-like modifications by predicting putative RNA-binding domains and E2-related RWD domains in certain PARPs. In line with the bioinformatic analysis, we demonstrate for the first time PARP14's RNA-binding capability and RNA ADP-ribosylation activity in vitro. While our insights align with existing experimental data and are probably accurate, they need further validation through experiments.
Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos , ADP-Ribosilação , RNA/metabolismoRESUMO
One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.
RESUMO
LIM domain kinases 1 and 2 (LIMK1 and LIMK2) regulate actin dynamics and subsequently key cellular functions such as proliferation and migration. LIMK1 and LIMK2 phosphorylate and inactivate cofilin leading to increased actin polymerization. As a result, LIMK inhibitors are emerging as a promising treatment strategy for certain cancers and neurological disorders. High-quality chemical probes are required if the role of these kinases in health and disease is to be understood. To that end, we report the results of a comparative assessment of 17 reported LIMK1/2 inhibitors in a variety of in vitro enzymatic and cellular assays. Our evaluation has identified three compounds (TH-257, LIJTF500025, and LIMKi3) as potent and selective inhibitors suitable for use as in vitro and in vivo pharmacological tools for the study of LIMK function in cell biology.
Assuntos
Actinas , Quinases Lim , Fatores de Despolimerização de Actina/metabolismo , Quinases Lim/química , Quinases Lim/metabolismo , FosforilaçãoRESUMO
The Protein Kinase N proteins (PKN1, PKN2 and PKN3) are Rho GTPase effectors. They are involved in several biological processes such as cytoskeleton organization, cell mobility, adhesion, and cell cycle. Recently PKNs have been reported as essential for survival in several tumor cell lines, including prostate and breast cancer. Here, we report the development of dihydropyrrolopyridinone-based inhibitors for PKN2 and its closest homologue, PKN1, and their associated structure-activity relationship (SAR). Our studies identified a range of molecules with high potency exemplified by compound 8 with Ki = 8 nM for PKN2 and 14x selectivity over PKN1. Membrane permeability and target engagement for PKN2 were assessed by a NanoBRET cellular assay. Importantly, good selectivity across the wider human kinome and other kinase family members was achieved. These compounds provide strong starting points for lead optimization to PKN1/2 development compounds.
Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridonas/síntese química , Piridonas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-AtividadeRESUMO
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Assuntos
Sondas Moleculares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , HumanosRESUMO
Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) regulates the proliferation and differentiation of neuronal progenitor cells during brain development. Consequently, DYRK1A has attracted interest as a target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Down's syndrome. Recently, the inhibition of DYRK1A has been investigated as a potential treatment for diabetes, while DYRK1A's role as a mediator in the cell cycle has garnered interest in oncologic indications. Structure-activity relationship (SAR) analysis in combination with high-resolution X-ray crystallography leads to a series of pyrazolo[1,5-b]pyridazine inhibitors with excellent ligand efficiencies, good physicochemical properties, and a high degree of selectivity over the kinome. Compound 11 exhibited good permeability and cellular activity without P-glycoprotein liability, extending the utility of 11 in an in vivo setting. These pyrazolo[1,5-b]pyridazines are a viable lead series in the discovery of new therapies for the treatment of diseases linked to DYRK1A function.
Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Solubilidade , Relação Estrutura-Atividade , Quinases DyrkRESUMO
SLK (STE20-like kinase) and STK10 (serine/threonine kinase 10) are closely related kinases whose enzymatic activity is linked to the regulation of ezrin, radixin, and moesin function and to the regulation of lymphocyte migration and the cell cycle. We identified a series of 3-anilino-4-arylmaleimides as dual inhibitors of SLK and STK10 with good kinome-wide selectivity. Optimization of this series led to multiple SLK/STK10 inhibitors with nanomolar potency. Crystal structures of exemplar inhibitors bound to SLK and STK10 demonstrated the binding mode of the inhibitors and rationalized their selectivity. Cellular target engagement assays demonstrated the binding of the inhibitors to SLK and STK10 in cells. Further selectivity analyses, including analysis of activity of the reported inhibitors against off-targets in cells, identified compound 31 as the most potent and selective inhibitor of SLK and STK10 yet reported.
Assuntos
Compostos de Anilina/farmacologia , Maleimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células HEK293 , Humanos , Maleimidas/química , Maleimidas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-AtividadeRESUMO
There is increasing evidence of a significant correlation between prolonged drug-target residence time and increased drug efficacy. Here, we report a structural rationale for kinetic selectivity between two closely related kinases: focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2). We found that slowly dissociating FAK inhibitors induce helical structure at the DFG motif of FAK but not PYK2. Binding kinetic data, high-resolution structures and mutagenesis data support the role of hydrophobic interactions of inhibitors with the DFG-helical region, providing a structural rationale for slow dissociation rates from FAK and kinetic selectivity over PYK2. Our experimental data correlate well with computed relative residence times from molecular simulations, supporting a feasible strategy for rationally optimizing ligand residence times. We suggest that the interplay between the protein structural mobility and ligand-induced effects is a key regulator of the kinetic selectivity of inhibitors of FAK versus PYK2.
Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Células Cultivadas , Feminino , Quinase 1 de Adesão Focal/metabolismo , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Sulfonamidas/síntese química , Sulfonamidas/químicaRESUMO
Kinases represent one of the most intensively pursued groups of targets in modern-day drug discovery. Often it is desirable to achieve selective inhibition of the kinase of interest over the remaining â¼500 kinases in the human kinome. This is especially true when inhibitors are intended to be used to study the biology of the target of interest. We present a pipeline of open-source software that analyzes public domain data to repurpose compounds that have been used in previous kinase inhibitor development projects. We define the dual-specificity tyrosine-regulated kinase 1A (DYRK1A) as the kinase of interest, and by addition of a single methyl group to the chosen starting point we remove glycogen synthase kinase ß (GSK3ß) and cyclin-dependent kinase (CDK) inhibition. Thus, in an efficient manner we repurpose a GSK3ß/CDK chemotype to deliver 8b, a highly selective DYRK1A inhibitor.
RESUMO
Water networks within kinase inhibitor design and more widely within drug discovery are generally poorly understood. The successful targeting of these networks prospectively has great promise for all facets of inhibitor design, including potency and selectivity for the target. Herein, we describe the design and testing of a targeted library of 4-anilinoquin(az)olines for use as inhibitors of cyclin G-associated kinase (GAK). GAK cellular target engagement assays, ATP binding-site modelling and extensive water mapping provide a clear route to access potent inhibitors for GAK and beyond.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinazolinas/farmacologia , Água/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-AtividadeRESUMO
Inhibitors based on a 3-acylaminoindazole scaffold were synthesized to yield potent dual AAK1/BMP2K inhibitors. Optimization furnished a small molecule chemical probe (SGC-AAK1-1, 25) that is potent and selective for AAK1/BMP2K over other NAK family members, demonstrates narrow activity in a kinome-wide screen, and is functionally active in cells. This inhibitor represents one of the best available small molecule tools to study the functions of AAK1 and BMP2K.
RESUMO
Kinases are signalling proteins which have proven to be successful targets for the treatment of a variety of diseases, predominantly in cancers. However, only a small proportion of kinases (<20%) have been investigated for their therapeutic viability, likely due to the lack of available chemical tools across the kinome. In this work we describe initial efforts in the development of a selective chemical tool for protein kinase N2 (PKN2), a relatively unexplored kinase of interest in several types of cancer. The most successful compound, 5, has a measured IC50 of 0.064 µM against PKN2, with ca. 17-fold selectivity over close homologue, PKN1.
Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Desenvolvimento de Medicamentos , Neoplasias/tratamento farmacológico , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-AtividadeRESUMO
The 4-anilinoquinoline and 4-anilinoquinazoline ring systems have been the focus of significant efforts in prior kinase drug discovery programs, which have led to approved medicines. Broad kinome profiles of these compounds have now been assessed with the advent of advanced screening technologies. These ring systems, while originally designed for specific targets including epidermal growth factor receptor (EGFR), but actually display a number of potent collateral kinase targets, some of which have been associated with negative clinical outcomes. We have designed and synthesized a series of 4-anilinoquin(az)olines in order to better understand the structure-activity relationships of three main collateral kinase targets of quin(az)oline-based kinase inhibitors: cyclin G associated kinase (GAK), STE20-like serine/threonine-protein kinase (SLK) and serine/threonine-protein kinase 10 (STK10). This was achieved through a series of quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites and extensive small-molecule X-ray structural analysis.
Assuntos
Compostos de Anilina/química , Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Quinazolinas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Compostos de Anilina/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinazolinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismoRESUMO
SGC-GAK-1 (1) is a potent, selective, cell-active chemical probe for cyclin G-associated kinase (GAK). However, 1 was rapidly metabolized in mouse liver microsomes by cytochrome P450-mediated oxidation, displaying rapid clearance in liver microsomes and in mice, which limited its utility in in vivo studies. Chemical modifications of 1 that improved metabolic stability, generally resulted in decreased GAK potency. The best analog in terms of GAK activity in cells was 6-bromo-N-(1H-indazol-6-yl)quinolin-4-amine (35) (IC50 = 1.4 µM), showing improved stability in liver microsomes while still maintaining a narrow spectrum activity across the kinome. As an alternative to scaffold modifications we also explored the use of the broad-spectrum cytochrome P450 inhibitor 1-aminobenzotriazole (ABT) to decrease intrinsic clearance of aminoquinoline GAK inhibitors. Taken together, these approaches point towards the development of an in vivo chemical probe for the dark kinase GAK.
Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Análise por Conglomerados , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-AtividadeRESUMO
Calcium/Calmodulin-dependent Protein Kinase Kinase 2 (CAMKK2) acts as a signaling hub, receiving signals from various regulatory pathways and decoding them via phosphorylation of downstream protein kinases - such as AMPK (AMP-activated protein kinase) and CAMK types I and IV. CAMKK2 relevance is highlighted by its constitutive activity being implicated in several human pathologies. However, at present, there are no selective small-molecule inhibitors available for this protein kinase. Moreover, CAMKK2 and its closest human homolog, CAMKK1, are thought to have overlapping biological roles. Here we present six new co-structures of potent ligands bound to CAMKK2 identified from a library of commercially-available kinase inhibitors. Enzyme assays confirmed that most of these compounds are equipotent inhibitors of both human CAMKKs and isothermal titration calorimetry (ITC) revealed that binding to some of these molecules to CAMKK2 is enthalpy driven. We expect our results to advance current efforts to discover small molecule kinase inhibitors selective to each human CAMKK.