Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
2.
Expert Rev Clin Immunol ; : 1-7, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38512803

RESUMO

INTRODUCTION: Forkhead box P3 (FoxP3) transcription factor plays critical roles in controlling immune responses and cancer progression in different cancers. FoxP3 expression within the tumor microenvironment (TME) may influence clinical outcomes negatively or positively, and it could play dual roles in cancer, either by promoting or inhibiting tumor development and progression. Some studies reported that high levels of FoxP3 could be associated with tumor progression and worse prognosis, while others reported contradictory results. AREAS COVERED: In this special report, we present a brief account on the role and function of FoxP3 in the TME, and its contribution to the clinical outcomes of cancer patients. Importantly, we give insights on the potential factors that could contribute to different clinical outcomes in cancer patients. EXPERT OPINION: Different studies showed that FoxP3 expression can be associated with bad prognoses in cancer patients. However, FoxP3 could have opposing roles by enhancing cancer progression or regression. Location and expression of FoxP3 in T cells or tumor cells can have different impacts on cancer prognoses. Different factors should be considered to establish FoxP3 as a more robust prognostic biomarker and a potential therapeutic target for enhancing anti-tumor immunity and improving clinical outcomes of cancer patients.

3.
Sci Rep ; 13(1): 19454, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945594

RESUMO

Circular RNAs (circRNA) are known to function as competing endogenous RNA (ceRNA) in various cancers by regulating microRNAs (miRNA). However, in colorectal cancer (CRC), the precise pathological role of circ000240/miRNA/mRNA remains indeterminate. The expression level of hsa_circ_000240 was evaluated using qRT-PCR in matching pairs of CRC tumor and adjacent normal tissue samples in our laboratory. Then, to determine whether hsa_circ_000240 acted as a ceRNA in CRC, the linked miRNAs and gene targets were retrieved. Topological analysis of candidate genes using a network approach identified the most critical hub genes and subnetworks related to CRC disease. Microarray and bulk RNA sequencing analyses were utilized to comprehensively evaluate the expression levels of both miRNA and mRNA in CRC. Single-cell RNA-seq analysis was also used to evaluate the significant overall survival (OS) genes at the cellular level. ATAC-seq data provided insights into candidate genes' accessible chromatin regions. The research uncovered a considerable upregulation of hsa_circ_000240 in CRC tissues. Three miRNAs interacted with the target circRNA. One thousand six hundred eighty intersected genes regulated by three miRNAs were further identified, and the relevant functionality of identified neighbor genes highlighted their relevance to cancer. The topological analysis of the constructed network has identified 33 hub genes with notably high expression in CRC. Among these genes, eight, including CHEK1, CDC6, FANCI, GINS2, MAD2L1, ORC1, RACGAP1, and SMC4, have demonstrated a significant impact on overall survival. The utilization of single-cell RNA sequencing unequivocally corroborated the augmented expression levels of CDC6 and ORC1 in individuals with CRC, alongside their noteworthy connection with the infiltration of immune cells. ATAC-seq analyses revealed altered accessibility regions in Chr2, 4, and 12 for CDC6 and ORC1 high-expression. Correlation analysis of CDC6 and ORC1 further highlighted the association of candidate gene expression with exhaustion markers such as CTLA4, CD247, TIGIT, and CD244. The candidate genes exhibit a positive correlation with chromatin remodeling and histone acetylation. These epigenetic modifications play a significant role in influencing the cancer progression following expression of CDC6 and ORC1 in CRC. Additionally, results showed that the methylation rate of the promoter region of CDC6 was elevated in CRC disease, confirming the functional importance of CDC6 and their interaction with hsa_circ_000240 and associated ceRNA in CRC. In conclusion, this study highlights hsa_circ_000240's role as a ceRNA in CRC. It opens new avenues for further dissection of CDC6, ORC1, and underlying novel epigenetics and immunotherapy targets for CRC therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA Circular/genética , Multiômica , MicroRNAs/genética , RNA Mensageiro/genética , Neoplasias Colorretais/genética , Proteínas Cromossômicas não Histona
4.
Clin Transl Med ; 13(9): e1425, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37735815

RESUMO

BACKGROUND: To date, standardising clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY: Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSION: This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities, including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immunomodulatory ncRNA biomarkers as predictive tools and therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , MicroRNAs/genética , MicroRNAs/uso terapêutico , RNA não Traduzido/genética , Biomarcadores , Microambiente Tumoral , Glipicanas
5.
Int Immunopharmacol ; 122: 110668, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487264

RESUMO

Boswellic acids have been recognized as anti-inflammatory and immunomodulatory agents with potentials to control autoimmune and inflammatory diseases. However, their effects on T cell proliferation and activation are not fully elucidated. In this study, we investigated effects of individual compounds including ß-Boswellic acids (ß-BA), 11-keto-ß-Boswellic acid (ß-KBA), 3-O-acetyl ß-Boswellic acids (ß-ABA), and 3-O-acetyl-11-keto-ß-Boswellic acid (ß-AKBA) on human peripheral blood mononuclear cells (PBMCs) and their potential role in modulating immune responses. We showed that ß-BA, KBA, and AKBA at a 0.025 µM concentration significantly reduced T cell proliferation without inducing cytotoxicity, however, ABA showed cytotoxic effects at this concentration. ß-BA and KBA showed significantly reduced T cell proliferation at 0.05 µM concentration without cytotoxic effects. Interestingly, we found that AKBA at 0.025 µM concentration significantly reduced CD25 expression on both CD4+ and CD8+ T cells without cytotoxic effects. Additionally, ß-BA reduced CD25 expression on both CD4+ and CD8+ T cells at 0.05 µM concentration with no cytotoxicity. In this study, we determined the optimum concentration of each of these compounds that have the potential to reduce T cell activation without cytotoxic effects. Our findings show that both ß-BA and AKBA have the ability to inhibit T cell proliferation and activation without inducing cytotoxicity. Further investigations are required to fully understand the mechanisms underlying these effects and the potential therapeutic benefits of these compounds in different autoimmune and inflammatory settings.


Assuntos
Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Humanos , Ativação Linfocitária , Proliferação de Células
6.
Int Immunopharmacol ; 119: 110207, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099940

RESUMO

Immune checkpoints (ICs) are highly expressed on tumor-infiltrating immune cells (TIICs) in different malignancies, including colorectal cancer (CRC). T cells play crucial roles in shaping CRC, and their presence in the tumor microenvironment (TME) has proven to be one of the best predictors of clinical outcomes. A crucial component of the immune system is cytotoxic CD8+ T cells (CTLs), which play decisive roles in the prognosis of CRC. In this study, we investigated associations of immune checkpoints expressed on tumor-infiltrating CD8+ T cells with disease-free survival (DFS) in 45 naïve-treatment CRC patients. First, we examined the associations of single ICs, and found that CRC patients with higher levels of T-cell immunoglobulin and ITIM-domain (TIGIT), T-cell immunoglobulin and mucin domain-3 (TIM-3) and programmed cell death-1 (PD-1) CD8+ T cells tended to have longer DFS. Interestingly, when PD-1 expression was combined with other ICs, there were more evident and stronger associations between higher levels of PD-1+ with TIGIT+ or PD-1+ with TIM-3+ tumor-infiltrating CD8+ T cells and longer DFS. Our findings for TIGIT were validated in The Cancer Genome Atlas (TCGA) CRC dataset. This study is the first to report on the association of co-expression of PD-1 with TIGIT and PD-1 with TIM-3 in CD8+ T cells and improved DFS in treatment-naïve CRC patients. This work highlights the significance of immune checkpoint expression on tumor-infiltrating CD8+ T cells as critical predictive biomarkers, especially when co-expression of different ICs is considered.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Intervalo Livre de Doença , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Neoplasias/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Imunoglobulinas/metabolismo , Linfócitos do Interstício Tumoral , Microambiente Tumoral
7.
iScience ; 26(4): 106333, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968082

RESUMO

Macrophages (MΦs) type 2 (M2) play crucial roles in the pathogenesis of gastrointestinal cancers (GIC) by enhancing tumor progression, invasion, and metastasis. Polarized M2 has been linked to the increase of GIC tumorigenesis and drug resistance. Several studies reported that M2-derived exosomal non-coding RNAs (Exos-ncRNAs) play pivotal roles in the modulation of the GIC tumor microenvironment (TME) and mostly promote drug resistance and immunosuppression. The impact of M2-Exos-ncRNAs is attributed to altered signaling pathways, enhancement of immunoregulatory mechanisms, and post-transcriptional modulation. Recent studies described novel targets in M2-TAMs-derived Exos-ncRNAs and potential promising clinical outcomes such as inhibiting tumor formation, invasion, and metastasis. Highlighting current knowledge of M2-Exos-ncRNAs involved in GIC pathogenesis and immunomodulation would thus be a significant contribution to improving clinical outcomes. In this review, we summarize recent updates on the role of M2-TAMs-Exos-ncRNAs in GIC pathogenesis, immunosuppression, and drug resistance. A deep understanding of M2-TAMs-derived Exos-ncRNAs could help to identify potential biomarkers and therapeutic targets.

8.
J Biomol Struct Dyn ; 41(24): 14771-14785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927289

RESUMO

Human immune system is specialized in distinguishing normal cells from foreign particles mainly through proteins expressed on immune cells called 'checkpoints'. Immune checkpoints work as a switch to activate and deactivate immune responses. T cells express one of the immune checkpoint, human programmed cell death-1 (PD-1), which normally operates as an off-switch function to protect the normal cell from T-cell attack. Binding of PD-1 to its ligand, the programmed cell death ligand (PD-L1/2) expressed on myeloid/cancer cells, induce downstream inhibitory signals, leading to tumor immune evasion. Targeting PD-1 or PD-L1 can boost the immune response against cancer cells. To design novel small molecule inhibitors for the PD-1, in silico structure-based screening on pharmacophoric points and molecular docking were performed. Based on the docking score and significant binding interaction with the crucial residues of PD-1 (Thr59, Glu61, Ser62, Glu84, Arg86 and Ala132), compounds were selected from the ZINC20 database, and their dynamic behavior and conformational stability were examined through molecular dynamic simulations. Besides, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method was used to calculate the binding strength of each selected inhibitor complexed with PD-1. The binding energy calculations revealed that these selected inhibitors show a considerable affinity for PD-1. The selected novel inhibitors exhibit excellent drug-like and pharmacokinetic properties (absorption, distribution, metabolism, excretion and toxicity). In conclusion, the identified novel compounds (ZINC1443480030, ZINC1002854123, ZINC988238128, ZINC1481242350, ZINC1001739421, ZINC1220816434 and ZINC1167786692) from the current study can be validated in-vitro as potential PD-1 inhibitors and for discovery of novel drugs against PD-1 in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Antígeno B7-H1 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Receptor de Morte Celular Programada 1 , Ligantes , Apoptose
9.
Eur J Pharmacol ; 945: 175612, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822455

RESUMO

Dysregulated epigenetic modifications are common in lung cancer but have been reversed using demethylating agent like 5-Aza-CdR. 5-Aza-CdR induces/upregulates the NY-ESO-1 antigen in lung cancer. Therefore, we investigated the molecular mechanisms accompanied with the epigenetic regulation of NY-ESO-1 in 5-Aza-CdR-treated NCI-H1975 cell line. We showed significant induction of the NY-ESO-1 protein (**p < 0.0097) using Cellular ELISA. Bisulfite-sequencing demonstrated 45.6% demethylation efficiency at the NY-ESO-1 gene promoter region and RT-qPCR analysis confirmed the significant induction of NY-ESO-1 at mRNA level (128-fold increase, *p < 0.050). We then investigated the mechanism by which 5-Aza-CdR inhibits cell proliferation in the NCI-H1975 cell line. Upregulation of the death receptors TRAIL (2.04-fold *p < 0.011) and FAS (2.1-fold *p < 0.011) indicate activation of the extrinsic apoptotic pathway. The upregulation of Voltage-dependent anion-selective channel protein 1 (1.9-fold), Major vault protein (1.8-fold), Bax (1.16-fold), and Cytochrome C (1.39-fold) indicate the activation of the intrinsic pathway. We also observed the differential expression of protein Complement C3 (3.3-fold), Destrin (-5.1-fold), Vimentin (-1.7-fold), Peroxiredoxin 4 (-1.6-fold), Fascin (-1.8-fold), Heme oxygenase-2 (-0.67-fold**p < 0.0055), Hsp27 (-0.57-fold**p < 0.004), and Hsp70 (-0.39-fold **p < 0.001), indicating reduced cell growth, cell migration, and metastasis. The upregulation of 40S ribosomal protein S9 (3-fold), 40S ribosomal protein S15 (4.2-fold), 40S ribosomal protein S18 (2.5-fold), and 60S ribosomal protein L22 (4.4-fold) implied the induction of translation machinery. These results reiterate the decisive role of 5-Aza-CdR in lung cancer treatment since it induces the epigenetic regulation of NY-ESO-1 antigen, inhibits cell proliferation, increases apoptosis, and decreases invasiveness.


Assuntos
Epigênese Genética , Neoplasias Pulmonares , Humanos , Decitabina/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Membrana/metabolismo , Azacitidina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Apoptose , Anticorpos/metabolismo , Linhagem Celular Tumoral
10.
Cancer Immunol Immunother ; 72(6): 1933-1939, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36436018

RESUMO

A variety of variables, such as microsatellite instability or inflammatory mediators, are critical players in the development and progression of colorectal cancer (CRC). Natural killer (NK) and natural killer T (NKT) cells are involved in the prognoses of CRC. Immunological components of the tumor microenvironment (TME) impact cancer progression and therapeutic responses. We report that CRC patients with higher frequencies of tumor-infiltrating PD-1+ NK and NKT cells had significantly longer disease-free survival (DFS) than patients with lower frequencies. In agreement with that, patients with higher frequencies of tumor-infiltrating PD-1- NK and NKT cells showed shorter DFS. There were no significant associations between tumor-infiltrating PD-1+TIM-3+, PD-1+TIGIT+, PD-1+ICOS+, PD-1+LAG-3+ NK cells, and PD-1+TIM-3+, PD-1+TIGIT+, and PD-1+LAG-3+ NKT cells with DFS. This study highlights the significance of PD-1 expression on tumor-infiltrating NK and NKT cells and its association with disease prognoses in CRC patients.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Células T Matadoras Naturais/metabolismo , Intervalo Livre de Doença , Receptores Imunológicos , Microambiente Tumoral
12.
Clin Immunol ; 245: 109177, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356848

RESUMO

Exhaustion of immune cells in COVID-19 remains a serious concern for infection management and therapeutic interventions. As reported, immune cells such as T effector cells (Teff), T regulatory cells (Tregs), natural killer cells (NKs), and antigen-presenting cells (APCs) exhibit uncontrolled functions in COVID-19. Unfortunately, the mechanisms that orchestrate immune cell functionality and virus interaction are still unknown. Recent studies linked adaptive immune cell exhaustion to underlying epigenetic mechanisms that regulate the epigenetic transcription of inhibitory immune checkpoint receptors (ICs). Further to that, the over-activation of T cells accompanied by the dysfunctionality of DCs and Tregs may enhance uncontrollable alveoli inflammation and cytokine storm in COVID-19. This might explain the reasons behind the failure of DC-based vaccines in inducing sufficient anti-viral responses. This review explains the processes behind the over-activation and exhaustion of innate and adaptive immune cells in COVID-19, which may contribute to developing novel immune intervention strategies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Inflamação , Células Matadoras Naturais
13.
Explor Target Antitumor Ther ; 3(4): 497-510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081407

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a group of immature myeloid cells, which are expanded in most cancer patients. MDSCs suppress host immune responses, leading to cancer growth and progression. Several studies demonstrated that there was a relationship between levels of MDSCs and tumorigenesis in colorectal cancer (CRC) patients. MDSCs are now being investigated for their role as possible therapeutic targets in cancer treatment. This review summarizes available studies that investigated MDSC expansion in CRC patients, as well as their role in CRC tumorigenesis, prognosis, and targeting. Based on the available studies, there is a possible relationship between high levels of MDSCs and CRC progression. Additionally, targeting MDSCs in CRC patients selectively represents a significant challenge for the development of targeted treatments. Targeting of MDSCs could be exploited in different ways including MDSC depletion, inhibition of MDSC function and recruitment, and enhancing MDSC differentiation. Overall, MDSCs could be exploited as prognostic biomarkers and potential therapeutic targets in CRC.

14.
Vaccines (Basel) ; 10(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36146549

RESUMO

The existence of various T regulatory cell (Treg) subsets in colorectal cancer (CRC) could play a variety of functions in the regulation of anti-cancer immunity. We studied correlations between CD4+ Treg subsets with the expression of immunological checkpoints on CD4+ T cells, including PD-1, TIM-3, LAG-3, and CTLA-4 in CRC patients with early and advanced TNM staging. Strong positive correlations were found between frequencies of FoxP3+ Tregs and FoxP3+Helios+ Tregs with frequencies of various immune checkpoint-expressing CD4+ T cells in the tumor microenvironment (TME). However, there were strong negative correlations between frequencies of FoxP3-Helios- T cells and these immune checkpoint-expressing CD4+ T cells. Specifically, in the TME, we found that the correlations between FoxP3+ Tregs, FoxP3+Helios+ Tregs, FoxP3+Helios- Tregs, and FoxP3-Helios- T cells with CD4+LAG-3+ T cells and CD4+CTLA-4+ T cells were higher in patients with early stages, suggesting the potential of these highly immunosuppressive cells in inhibiting inflammatory responses in the TME. However, the correlations between FoxP3+ Tregs, FoxP3+Helios+ Tregs, and FoxP3-Helios- T cells with CD4+TIM-3+ T cells were higher in patients with advanced stages. This is the first study to explore correlations of Treg subpopulations with immune checkpoint-expressing CD4+ T cells in CRC based on clinicopathological features of CRC patients. The findings of our study provide a justification for focusing on these cells that possess highly immunosuppressive features. Understanding the correlations between different immune checkpoints and Treg subsets in CRC patients has the potential to enhance our understanding of core mechanisms of Treg-mediated immunosuppression in cancer.

15.
Clin Transl Med ; 12(8): e1026, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35988156

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is persistently threatening the lives of thousands of individuals globally. It triggers pulmonary oedema, driving to dyspnoea and lung failure. Viral infectivity of coronavirus disease 2019 (COVID-19) is a genuine challenge due to the mutagenic genome and mysterious immune-pathophysiology. Early reports highlighted that extracellular vesicles (exosomes, Exos) work to enhance COVID-19 progression by mediating viral transmission, replication and mutations. Furthermore, recent studies revealed that Exos derived from immune cells play an essential role in the promotion of immune cell exhaustion by transferring regulatory lncRNAs and miRNAs from exhausted cells to the active cells. Fortunately, there are great chances to modulate the immune functions of Exos towards a sustained repression of COVID-19. Engineered Exos hold promising immunotherapeutic opportunities for remodelling cytotoxic T cells' function. Immune cell-derived Exos may trigger a stable epigenetic repression of viral infectivity, restore functional cytokine-producing T cells and rebalance immune response in severe infections by inducing functional T regulatory cells (Tregs). This review introduces a view on the current outcomes of immunopathology, and immunotherapeutic applications of immune cell-derived Exos in COVID-19, besides new perspectives to develop novel patterns of engineered Exos triggering novel anti-SARS-CoV-2 immune responses.


Assuntos
COVID-19 , Exossomos , COVID-19/terapia , Citocinas , Exossomos/transplante , Humanos , Linfócitos/metabolismo , MicroRNAs/genética , MicroRNAs/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , SARS-CoV-2
16.
Cancers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35804964

RESUMO

T cells in the tumor microenvironment (TME) have diverse roles in anti-tumor immunity, including orchestration of immune responses and anti-tumor cytotoxic attack. However, different T cell subsets may have opposing roles in tumor progression, especially in inflammation-related cancers such as colorectal cancer (CRC). In this study, we phenotypically characterized CD3+CD4- (CD8+) T cells in colorectal tumor tissues (TT), normal colon tissues (NT) and in circulation of CRC patients. We investigated the expression levels of key immune checkpoints (ICs) and Treg-related markers in CD8+ T cells. Importantly, we investigated associations between different tumor-infiltrating CD8+ T cell subpopulations and disease-free survival (DFS) in CRC patients. We found that FoxP3 expression and ICs including PD-1, CTLA-4, TIM-3, and LAG-3 were significantly increased in tumor-infiltrating CD8+ T cells compared with NT and peripheral blood. In the TME, we found that TIM-3 expression was significantly increased in patients with early stages and absent lymphovascular invasion (LVI) compared to patients with advanced stages and LVI. Importantly, we report that high levels of certain circulating CD8+ T cell subsets (TIM-3-expressing, FoxP3-Helios-TIM-3+ and FoxP3-Helios+TIM-3+ cells) in CRC patients were associated with better DFS. Moreover, in the TME, we report that elevated levels of CD25+ and TIM-3+ T cells, and FoxP3+Helios-TIM-3+ Tregs were associated with better DFS.

17.
BMC Cancer ; 22(1): 601, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655158

RESUMO

There are different subsets of T regulatory cells (Tregs), orchestrating critical roles in the regulation of anti-tumor immunity in colorectal cancer (CRC). In this study, we report that a high frequency of circulating CD4+FoxP3+ Tregs was associated with poorer disease-free survival (DFS), while their higher frequencies in tumor-infiltrating CD4+ Tregs was associated with better DFS. We further investigated such associations with four Tregs/T cells expressing or lacking FoxP3 and Helios (FoxP3±Helios±). For the first time, we report that a high frequency of circulating CD4+FoxP3+Helios+ Tregs was associated with poorer DFS, while a high frequency of tumor-infiltrating CD4+FoxP3-Helios- T cells was associated with poorer DFS. In the four FoxP3±Helios± T cell subsets expressing any of the immune checkpoints (ICs) investigated, we found that a high frequency of CD4+FoxP3+Helios-PD-1+ Tregs in circulation was associated with worse DFS. We also found that high frequencies of FoxP3+Helios+CTLA-4+ Tregs, FoxP3+Helios-CTLA-4+ Tregs, and FoxP3-Helios+CTLA-4+ CD4+ T cells in circulation were associated with worse DFS. In contrast, high frequencies of CD4+TIM-3+ T cells, FoxP3+Helios+TIM-3+ Tregs, and FoxP3-Helios+TIM-3+ CD4+ T cells in circulation were associated with longer DFS. Our data show that certain CD4+ Treg/T cell subsets could serve as independent predictive biomarkers in CRC patients. Identification of the exact subpopulations contributing to clinical outcomes is critical for prognoses and therapeutic targeting.


Assuntos
Neoplasias Colorretais , Linfócitos T Reguladores , Antígeno CTLA-4 , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Fatores de Transcrição Forkhead , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Fator de Transcrição Ikaros , Subpopulações de Linfócitos T/patologia
18.
J Immunol Res ; 2022: 5545319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497875

RESUMO

Coronavirus disease 2019 (COVID-19) has been raised as a pandemic disease since December 2019. Immunosuppressive cells including T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are key players in immunological tolerance and immunoregulation; however, they contribute to the pathogenesis of different diseases including infections. Tregs have been shown to impair the protective role of CD8+ T lymphocytes against viral infections. In COVID-19 patients, most studies reported reduction, while few other studies found elevation in Treg levels. Moreover, Tregs have a dual role, depending on the different stages of COVID-19 disease. At early stages of COVID-19, Tregs have a critical role in decreasing antiviral immune responses, and consequently reducing the viral clearance. On the other side, during late stages, Tregs reduce inflammation-induced organ damage. Therefore, inhibition of Tregs in early stages and their expansion in late stages have potentials to improve clinical outcomes. In viral infections, MDSC levels are highly increased, and they have the potential to suppress T cell proliferation and reduce viral clearance. Some subsets of MDSCs are expanded in the blood of COVID-19 patients; however, there is a controversy whether this expansion has pathogenic or protective effects in COVID-19 patients. In conclusion, further studies are required to investigate the role and function of immunosuppressive cells and their potentials as prognostic biomarkers and therapeutic targets in COVID-19 patients.


Assuntos
COVID-19 , Células Supressoras Mieloides , Humanos , Tolerância Imunológica , Imunossupressores , Pandemias , Linfócitos T Reguladores
19.
J Pers Med ; 12(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629238

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Some complete blood count (CBC) parameters are found to be associated with CRC prognosis. In this study, ninety-seven pretreated CRC patients were included, and the patients were divided into two groups: left-sided and right-sided, depending on the anatomical location of the tumor. Based on clinicopathologic features including tumor budding, disease stages, and tumor anatomical location, levels of CBC parameters were compared, and disease-free survivals (DFS) were determined. There were differences between patients with different tumor budding scores for only three parameters, including red cell distribution width (RDW), numbers of platelets, and mean platelet volume (MPV). Furthermore, numbers of WBCs, monocytes, and MPV in CRC patients with early disease stages were higher than those with advanced stages. However, levels of eosinophil in CRC patients with advanced stages were higher than those with early stages. Depending on the tumor anatomical location, we observed that numbers of red blood cells (RBCs), hemoglobin (Hgb), and hematocrit (Hct) in CRC patients with left-sided tumors were higher than those with right-sided tumors. We found that low levels of MPV were associated with shorter DFS. However, high levels of eosinophils were associated with shorter DFS in all CRC patients. When patients were divided based on the tumor anatomical location, higher levels of MPV, MCHC, and Hgb were associated with better DFS in the left-sided but not right-sided CRC patients. However, left-sided, but not right-sided, CRC patients with high levels of eosinophil and RDW had shorter DFS. Furthermore, right-sided, but not left-sided, CRC patients with high levels of platelets tended to have a shorter DFS. Our data show that MPV and eosinophils could serve as potential prognostic biomarkers in pre-treatment CRC patients, regardless of the tumor anatomical location. Additionally, lower levels of MPV, MCHC, and Hgb, and high levels of eosinophils and RDW could be negative predictive biomarkers in left-sided CRC patients.

20.
Front Immunol ; 13: 870283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432324

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. During T-cell activation, the immune system uses different checkpoint pathways to maintain co-inhibitory and co-stimulatory signals. In COVID-19, expression of immune checkpoints (ICs) is one of the most important manifestations, in addition to lymphopenia and inflammatory cytokines, contributing to worse clinical outcomes. There is a controversy whether upregulation of ICs in COVID-19 patients might lead to T-cell exhaustion or activation. This review summarizes the available studies that investigated IC receptors and ligands in COVID-19 patients, as well as their effect on T-cell function. Several IC receptors and ligands, including CTLA-4, BTLA, TIM-3, VISTA, LAG-3, TIGIT, PD-1, CD160, 2B4, NKG2A, Galectin-9, Galectin-3, PD-L1, PD-L2, LSECtin, and CD112, were upregulated in COVID-19 patients. Based on the available studies, there is a possible relationship between disease severity and increased expression of IC receptors and ligands. Overall, the upregulation of some ICs could be used as a prognostic biomarker for disease severity.


Assuntos
COVID-19 , Humanos , Ligantes , Prognóstico , Receptores Imunológicos/metabolismo , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA