Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement (Amst) ; 16(1): e12548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352040

RESUMO

Most suspected Creutzfeldt-Jakob disease (CJD) cases are eventually diagnosed with other disorders. We assessed the utility of investigating Alzheimer's disease (AD) biomarkers and neurofilament light (NfL) in patients when CJD is suspected. The study cohort consisted of cerebrospinal fluid (CSF) samples referred for CJD biomarker screening wherein amyloid beta 1-42 (Aß1-42), phosphorylated tau 181 (p-tau181), and total tau (t-tau) could be assessed via Elecsys immunoassays (n = 419) and NfL via enzyme-linked immunosorbent assay (ELISA; n = 161). In the non-CJD sub cohort (n = 371), 59% (219/371) had A+T- (abnormal Aß1-42 only) and 21% (79/371) returned A+T+ (abnormal Aß1-42 and p-tau181). In the 48 CJD subjects, a similar AD biomarker profile distribution was observed. To partially address the prevalence of likely pre-symptomatic AD, NfL was utilized to assess for neuronal damage. NfL was abnormal in 76% (25/33) of A+T- subjects 40 to 69 years of age, 80% (20/25) of whom had normal t-tau. This study reinforces AD as an important differential diagnosis of suspected CJD, highlighting that incorporating AD biomarkers and NfL at initial testing is worthwhile.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37357180

RESUMO

Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2022: Nationwide surveillance of Creutzfeldt-Jakob disease (CJD) and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2022. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2022, a total of 599 domestic CSF specimens were referred for diagnostic testing and 79 persons with suspected human prion disease were formally added to the national register. As of 31 December 2022, just under half of the 79 suspect case notifications (36/79) remain classified as 'incomplete'; 15 cases were classified as 'definite' and 23 as 'probable' prion disease; five cases were excluded through neuropathological examination. For 2022, fifty-five percent of all suspected human-prion-disease-related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. The SARS-CoV-2 pandemic did not affect prion disease surveillance outcomes in Australia during 2022.


Assuntos
COVID-19 , Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/epidemiologia , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Estudos Prospectivos , Notificação de Doenças , Austrália/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2 , Doenças Priônicas/diagnóstico , Doenças Priônicas/epidemiologia , Doenças Priônicas/líquido cefalorraquidiano
3.
Front Neurol ; 14: 1072952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846121

RESUMO

The most frequently utilized biomarkers to support a pre-mortem clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) include concentrations of the 14-3-3 and total tau (T-tau) proteins, as well as the application of protein amplification techniques, such as the real time quaking-induced conversion (RT-QuIC) assay, in cerebrospinal fluid (CSF). Utilizing CSF from a cohort of neuropathologically confirmed (definite) sCJD (n = 50) and non-CJD controls (n = 48), we established the optimal cutpoints for the fully automated Roche Elecsys® immunoassay for T-tau and the CircuLexTM 14-3-3 Gamma ELISA and compared these to T-tau protein measured using a commercially available assay (INNOTEST hTAU Ag) and 14-3-3 protein detection by western immunoblot (WB). These CSF specimens were also assessed for presence of misfolded prion protein using the RT-QuIC assay. T-tau showed similar diagnostic performance irrespective of the assay utilized, with ~90% sensitivity and specificity. The 14-3-3 protein detection by western blot (WB) has 87.5% sensitivity and 66.7% specificity. The 14-3-3 ELISA demonstrated 81.3% sensitivity and 84.4% specificity. RT-QuIC was the single best performing assay, with a sensitivity of 92.7% and 100% specificity. Our study indicates that a combination of all three CSF biomarkers increases sensitivity and offers the best chance of case detection pre-mortem. Only a single sCJD case in our cohort was negative across the three biomarkers, emphasizing the value of autopsy brain examination on all suspected CJD cases to ensure maximal case ascertainment.

4.
Commun Biol ; 4(1): 411, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767334

RESUMO

Prion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity.


Assuntos
Encéfalo/patologia , MicroRNAs/análise , Doenças Priônicas/etiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/sangue , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/etiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/sangue , Pessoa de Meia-Idade , Doenças Priônicas/sangue
5.
Prog Mol Biol Transl Sci ; 175: 121-145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32958230

RESUMO

Transmissible spongiform encephalopathies or prion diseases describe a number of different human disorders that differ in their clinical phenotypes, which are nonetheless united by their transmissible nature and common pathology. Clinical variation in the absence of a conventional infectious agent is believed to be encoded by different conformations of the misfolded prion protein. This misfolded protein is the target of methods designed to prevent disease transmission in a surgical setting and reduction of the misfolded seed or preventing its continued propagation have been the focus of therapeutic strategies. It is therefore possible that strain variation may influence the efficacy of prevention and treatment approaches. Historically, an understanding of prion disease transmission and pathogenesis has been focused on research tools developed using agriculturally relevant strains of prion disease. However, an increased understanding of the molecular biology of human prion disorders has highlighted differences not only between different forms of the disease affecting humans and animals but also within diseases such as Creutzfeldt-Jakob Disease (CJD), which is represented by several sporadic CJD specific conformations and an additional conformation associated with variant CJD. In this chapter we will discuss whether prion strain variation can affect the efficacy of methods used to decontaminate prions and whether strain variation in pre-clinical models of prion disease can be used to identify therapeutic strategies that have the best possible chance of success in the clinic.


Assuntos
Doenças Priônicas/prevenção & controle , Doenças Priônicas/terapia , Príons/metabolismo , Humanos , Doenças Priônicas/transmissão
6.
Biophys J ; 119(1): 128-141, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32562618

RESUMO

Prion diseases are neurodegenerative disorders pathogenically linked to cellular prion protein (PrPC) misfolding into abnormal conformers (PrPSc), with PrPSc underpinning both transmission and synaptotoxicity. Although the biophysical features of PrPSc required to induce acute synaptic dysfunction remain incompletely defined, we recently reported that acutely synaptotoxic PrPSc appeared to be oligomeric. We herein provide further insights into the kinetic and requisite biophysical characteristics of acutely synaptotoxic ex vivo PrPSc derived from the brains of mice dying from M1000 prion disease. Pooled fractions of M1000 PrPSc located within the molecular weight range approximating monomeric PrP (mM1000) generated through size exclusion chromatography were found to harbor acute synaptotoxicity equivalent to preformed oligomeric fractions (oM1000). Subsequent investigation showed mM1000 corresponded to PrPSc rapidly concatenating in physiological buffer to exist as predominantly, closely associated, small oligomers. The oligomerization of PrP in mM1000 could be substantially mitigated by treatment with the antiaggregation compound epigallocatechin gallate, thereby maintaining the PrPSc as primarily nonoligomeric with completely abrogated acute synaptotoxicity; moreover, despite epigallocatechin gallate treatment, pooled oM1000 remained oligomeric and acutely synaptotoxic. A similar tendency to rapid formation of oligomers was observed for PrPC when monomeric fractions derived from size exclusion chromatography of normal brain homogenates (mNBH) were pooled, but neither mNBH nor preformed higher-order NBH complexes (oNBH) were acutely synaptotoxic. Oligomers formed from mNBH could be reduced to mainly monomers (<100 kDa) after enzymatic digestion of nucleic acids, whereas higher-order PrP assemblies derived from pooled mM1000, oM1000, and oNBH resisted such treatment. Collectively, these findings support that oligomerization of PrPSc into small multimeric assemblies appears to be a critical biophysical feature for engendering inherent acute synaptotoxicity, with preformed oligomers found in oM1000 appearing to be stable, tightly self-associated ensembles that coexist in dynamic equilibrium with mM1000, with the latter appearing capable of rapid aggregation, albeit initially forming smaller, weakly self-associated, acutely synaptotoxic oligomers.


Assuntos
Proteínas PrPC , Doenças Priônicas , Príons , Animais , Encéfalo/metabolismo , Camundongos
7.
Neurogastroenterol Motil ; 32(3): e13755, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709672

RESUMO

BACKGROUND: Chronic stress exacerbates motor deficits and increases dopaminergic cell loss in several rodent models of Parkinson's disease (PD). However, little is known about effects of stress on gastrointestinal (GI) dysfunction, a common non-motor symptom of PD. We aimed to determine whether chronic stress exacerbates GI dysfunction in the A53T mouse model of PD and whether this relates to changes in α-synuclein distribution. METHODS: Chronic isolation stress was induced by single-housing WT and homozygote A53T mice between 5 and 15 months of age. GI and motor function were compared with mice that had been group-housed. KEY RESULTS: Chronic isolation stress increased plasma corticosterone and exacerbated deficits in colonic propulsion and whole-gut transit in A53T mice and also increased motor deficits. However, our results indicated that the novel environment-induced defecation response, a common method used to evaluate colorectal function, was not a useful test to measure exacerbation of GI dysfunction, most likely because of the reported reduced level of anxiety in A53T mice. A53T mice had lower corticosterone levels than WT mice under both housing conditions, but single-housing increased levels for both genotypes. Enteric neuropathy was observed in aging A53T mice and A53T mice had a greater accumulation of alpha-synuclein (αsyn) in myenteric ganglia under both housing conditions. CONCLUSIONS & INFERENCES: Chronic isolation stress exacerbates PD-associated GI dysfunction, in addition to increasing motor deficits. However, these changes in GI symptoms are not directly related to corticosterone levels, worsened enteric neuropathy, or enteric αsyn accumulation.


Assuntos
Sistema Nervoso Entérico/patologia , Motilidade Gastrointestinal/fisiologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/psicologia , Estresse Psicológico/complicações , Animais , Sistema Nervoso Entérico/fisiopatologia , Camundongos , Camundongos Transgênicos , Transtornos Parkinsonianos/fisiopatologia , Isolamento Social/psicologia
8.
PLoS Pathog ; 15(4): e1007712, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30970042

RESUMO

Although considerable evidence supports that misfolded prion protein (PrPSc) is the principal component of "prions", underpinning both transmissibility and neurotoxicity, clear consensus around a number of fundamental aspects of pathogenesis has not been achieved, including the time of appearance of neurotoxic species during disease evolution. Utilizing a recently reported electrophysiology paradigm, we assessed the acute synaptotoxicity of ex vivo PrPSc prepared as crude homogenates from brains of M1000 infected wild-type mice (cM1000) harvested at time-points representing 30%, 50%, 70% and 100% of the terminal stage of disease (TSD). Acute synaptotoxicity was assessed by measuring the capacity of cM1000 to impair hippocampal CA1 region long-term potentiation (LTP) and post-tetanic potentiation (PTP) in explant slices. Of particular note, cM1000 from 30% of the TSD was able to cause significant impairment of LTP and PTP, with the induced failure of LTP increasing over subsequent time-points while the capacity of cM1000 to induce PTP failure appeared maximal even at this early stage of disease progression. Evidence that the synaptotoxicity directly related to PrP species was demonstrated by the significant rescue of LTP dysfunction at each time-point through immuno-depletion of >50% of total PrP species from cM1000 preparations. Moreover, similar to our previous observations at the terminal stage of M1000 prion disease, size fractionation chromatography revealed that capacity for acute synpatotoxicity correlated with predominance of oligomeric PrP species in infected brains across all time points, with the profile appearing maximised by 50% of the TSD. Using enhanced sensitivity western blotting, modestly proteinase K (PK)-resistant PrPSc was detectable at very low levels in cM1000 at 30% of the TSD, becoming robustly detectable by 70% of the TSD at which time substantial levels of highly PK-resistant PrPSc was also evident. Further illustrating the biochemical evolution of acutely synaptotoxic species the synaptotoxicity of cM1000 from 30%, 50% and 70% of the TSD, but not at 100% TSD, was abolished by digestion of immuno-captured PrP species with mild PK treatment (5µg/ml for an hour at 37°C), demonstrating that the predominant synaptotoxic PrPSc species up to and including 70% of the TSD were proteinase-sensitive. Overall, these findings in combination with our previous assessments of transmitting prions support that synaptotoxic and infectious M1000 PrPSc species co-exist from at least 30% of the TSD, simultaneously increasing thereafter, albeit with eventual plateauing of transmitting conformers.


Assuntos
Evolução Biológica , Encefalopatias/patologia , Proteínas PrPSc/metabolismo , Doenças Priônicas/patologia , Príons/patogenicidade , Sinapses/patologia , Animais , Encefalopatias/etiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças Priônicas/etiologia , Proteólise , Sinapses/metabolismo
9.
Methods Mol Biol ; 1658: 23-26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861779

RESUMO

A key event in the pathogenesis of prion diseases is the change in structure of the normal cellular form of the prion protein from a predominantly α-helix form to the ß-sheet-rich prion protein found in disease-associated tissue. To allow more detailed structural research into PrP misfolding, it is necessary to have techniques which enable enrichment of the ß-sheet content in recombinant PrP.This method describes the procedure for inducing ß-folding of recombinant PrP to resemble a disease-associated structure and ultimately produce soluble ß-folded recombinant PrP.


Assuntos
Dicroísmo Circular/métodos , Soluções para Diálise/química , Diálise/métodos , Proteínas Priônicas/química , Dobramento de Proteína , Diálise/instrumentação , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Termodinâmica
10.
Methods Mol Biol ; 1658: 27-34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861780

RESUMO

According to the protein-only hypothesis of prion propagation, the pathogenesis of prion disease is due to the misfolding of cellular PrP (PrPC) which gives rise to disease-associated PrPSc. This misfolding results in the predominantly α-helix secondary structure of PrP becoming increasingly ß-sheet. Prion protein researchers often employ circular dichroism (CD) spectroscopy to rapidly analyze and identify the degree of α-helix and ß-sheet content in their recombinant protein and peptide samples. CD is a nondestructive method of determining protein secondary structure and can be used to monitor the protein structural changes in various environments, e.g., pH and temperature. CD can also be used to investigate kinetic and thermodynamic characteristics of proteins and peptides.


Assuntos
Dicroísmo Circular/métodos , Proteínas Priônicas/química , Dobramento de Proteína , Liofilização , Humanos , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Temperatura , Termodinâmica
11.
Methods Mol Biol ; 1658: 285-292, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861796

RESUMO

Intracerebral inoculation of mice with the M1000 strain of mouse-adapted human prions results in the consistent accumulation of PrPSc in the ileum of the gastrointestinal tract (GIT) of mice with clinical signs of prion disease. The accumulation of PrPSc in the ileum is accompanied by caspase activation and loss of immunoreactivity in subpopulations of neurons in the enteric nervous system. This suggests that like neurons in the central nervous system, cells in the enteric nervous system are also susceptible to prion-induced toxicity. In this chapter we describe the immunostaining of cells in myenteric plexus preparations of whole mounts prepared from the gastrointestinal tract of prion-infected mice.


Assuntos
Íleo/patologia , Imuno-Histoquímica/métodos , Plexo Mientérico/patologia , Neurônios/patologia , Doenças Priônicas/patologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Íleo/metabolismo , Injeções Intraventriculares , Camundongos , Camundongos Transgênicos , Microdissecção/métodos , Plexo Mientérico/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neurônios/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Fixação de Tecidos/métodos
12.
Glycobiology ; 25(7): 745-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25701659

RESUMO

Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a ß-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.


Assuntos
Glicosaminoglicanos/metabolismo , Príons/metabolismo , Sulfatos/metabolismo , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína
13.
J Biol Chem ; 289(2): 789-802, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24280226

RESUMO

Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrP(C) to the pathological isoform led to PrP(Sc) accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.


Assuntos
Colesterol/metabolismo , Neurônios/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Células 3T3 , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/metabolismo , Expressão Gênica/genética , Humanos , Hidrocarbonetos Fluorados/farmacologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Neurônios/patologia , Doenças Priônicas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA