Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(25): e2400904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516720

RESUMO

The application of hardware-based neural networks can be enhanced by integrating sensory neurons and synapses that enable direct input from external stimuli. This work reports direct optical control of an oscillatory neuron based on volatile threshold switching in V3O5. The devices exhibit electroforming-free operation with switching parameters that can be tuned by optical illumination. Using temperature-dependent electrical measurements, conductive atomic force microscopy (C-AFM), in situ thermal imaging, and lumped element modelling, it is shown that the changes in switching parameters, including threshold and hold voltages, arise from overall conductivity increase of the oxide film due to the contribution of both photoconductive and bolometric characteristics of V3O5, which eventually affects the oscillation dynamics. Furthermore, V3O5 is identified as a new bolometric material with a temperature coefficient of resistance (TCR) as high as -4.6% K-1 at 423 K. The utility of these devices is illustrated by demonstrating in-sensor reservoir computing with reduced computational effort and an optical encoding layer for spiking neural network (SNN), respectively, using a simulated array of devices.

2.
ACS Appl Mater Interfaces ; 15(50): 58613-58622, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051757

RESUMO

The resistive switching response of two terminal metal/oxide/metal devices depends on the stoichiometry of the oxide film, and this is commonly controlled by using a reactive metal electrode to reduce the oxide layer. Here, we investigate compositional and structural changes induced in Nb/Nb2O5 bilayers by thermal annealing at temperatures in the range of 573-973 K and its effect on the volatile threshold switching characteristics of Nb/Nb2O5/Pt devices. Changes in the stoichiometry of the Nb and Nb2O5 films are determined by Rutherford backscattering spectrometry and energy-dispersive X-ray (EDX) mapping of sample cross sections, while the structure of the films is determined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy (TEM). Such analysis shows that the composition of the Nb and Nb2O5 layers is homogenized by interdiffusion at temperatures less than the crystallization temperature (i.e., >773 K) but that this effectively ceases once the films crystallize. This is explained by comparison with the predictions of a simple diffusion model which shows that the compositional changes are dominated by oxygen diffusion in the amorphous oxide, which is much faster than that in the crystalline phases. We further show that these compositional and structural changes have a significant effect on the electroforming and threshold switching characteristics of the devices, the most significant being a marked increase in their reliability and endurance after crystallization of the oxide films. Finally, we examine the effect of annealing on the quasistatic negative differential resistance characteristics and oscillator dynamics of devices and use a lumped element model to show that this is dominated by changes in the device capacitance resulting from interdiffusion.

3.
Nanoscale ; 15(16): 7559-7565, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37038892

RESUMO

Volatile threshold switching and current-controlled negative differential resistance (NDR) in metal-oxide-metal (MOM) devices result from thermally driven conductivity changes induced by local Joule heating and are therefore influenced by the thermal properties of the device-structure. In this study, we investigate the effect of the metal electrodes on the threshold switching response of NbOx-based cross-point devices. The electroforming and switching characteristics are shown to be strongly influenced by the thickness and thermal conductivity of the top-electrode due to its effect on heat loss from the NbOx film. Specifically, we demonstrate a 40% reduction in threshold voltage and a 75% reduction in threshold power as the thickness of the top Au electrode is reduced from 125 nm to 25 nm, and a 24% reduction in threshold voltage and 64% reduction in threshold power when the Au electrode is replaced by a Pt electrode of the same thickness of NbOx film, due to its lower thermal conductivity. Lumped element and finite element modelling of the devices show that these improvements are due to a reduction in heat loss to the electrodes, which is dominated by lateral heat flow within the electrode. These results clearly demonstrate the importance of the electrodes in determining the electroforming and threshold switching characteristics of MOM cross point devices.

4.
ACS Appl Mater Interfaces ; 14(25): 29025-29031, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700145

RESUMO

Temperature mapping by in situ thermoreflectance thermal imaging (TRTI) or midwave infrared spectroscopy has played an important role in understanding the origins of threshold switching and the effect of insulator-metal transitions in oxide-based memrsitive devices. In this study, we use scanning thermal microscopy (SThM) as an alternative thermal mapping technique that offers high spatial resolution imaging (∼100 nm) and is independent of material. Specifically, SThM is used to map the temperature distribution in NbOx-based cross-bar and nanovia devices with Pt top electrodes. The measurements on cross-bar devices reproduce the current redistribution and confinement processes previously observed by TRTI but without the need to coat the electrodes with a material of high thermo-reflectance coefficient (e.g., Au), while those on the nanovia devices highlight the spatial resolution of the technique. The measured temperature distributions are compared with those obtained from physics-based finite-element simulations and suggest that thermal boundary resistance plays an important role in heat transfer between the active device volume and the top electrode.

5.
ACS Appl Mater Interfaces ; 14(18): 21270-21277, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35485924

RESUMO

Metal-oxide-metal (MOM) devices based on niobium oxide exhibit threshold switching (or current-controlled negative differential resistance) due to thermally induced conductivity changes produced by Joule heating. A detailed understanding of the device characteristics therefore relies on an understanding of the thermal properties of the niobium oxide film and the MOM device structure. In this study, we use time-domain thermoreflectance to determine the thermal conductivity of amorphous NbOx films as a function of film composition and temperature. The thermal conductivity is shown to vary between 0.86 and 1.25 W·m-1·K-1 over the composition (x = 1.9 to 2.5) and temperature (293 to 453 K) ranges examined, and to increase with temperature for all compositions. The impact of these thermal conductivity variations on the quasistatic current-voltage (I-V) characteristics and oscillator dynamics of MOM devices is then investigated using a lumped-element circuit model. Understanding such effects is essential for engineering functional devices for nonvolatile memory and brain-inspired computing applications.

6.
ACS Appl Mater Interfaces ; 12(7): 8422-8428, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31989818

RESUMO

Electroforming is used to initiate the memristive response in metal/oxide/metal devices by creating a filamentary conduction path in the oxide film. Here, we use a simple photoresist-based detection technique to map the spatial distribution of conductive filaments formed in Nb/NbOx/Pt devices, and correlate these with current-voltage characteristics and in situ thermoreflectance measurements to identify distinct modes of electroforming in low- and high-conductivity NbOx films. In low-conductivity films, the filaments are randomly distributed within the oxide film, consistent with a field-induced weakest-link mechanism, while in high-conductivity films they are concentrated in the center of the film. In the latter case, the current-voltage characteristics and in situ thermoreflectance imaging show that electroforming is associated with current bifurcation into regions of low and high current density. This is supported by finite element modeling of the current distribution and shown to be consistent with predictions of a simple core-shell model of the current distribution. These results clearly demonstrate two distinct modes of electroforming in the same material system and show that the dominant mode depends on the conductivity of the film, with field-induced electroforming dominant in low-conductivity films and current bifurcation-induced electroforming dominant in high-conductivity films.

7.
Beilstein J Nanotechnol ; 9: 2287-2296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202697

RESUMO

We have fabricated two-dimensional photonic crystals (PhCs) on the surface of Si nanocrystal-rich SiO2 layers with the goal to maximize the photoluminescence extraction efficiency in the normal direction. The fabricated periodic structures consist of columns ordered into square and hexagonal pattern with lattice constants computed such that the red photoluminescence of Si nanocrystals (SiNCs) could couple to leaky modes of the PhCs and could be efficiently extracted to surrounding air. Samples having different lattice constants and heights of columns were investigated in order to find the configuration with the best performance. Spectral overlap of the leaky modes with the luminescence spectrum of SiNCs was verified experimentally by measuring photonic band diagrams of the leaky modes employing angle-resolved spectroscopy and also theoretically by computing the reflectance spectra. The extraction enhancement within different spatial angles was evaluated by means of micro-photoluminescence spectroscopy. More than 18-fold extraction enhancement was achieved for light propagating in the normal direction and up to 22% increase in overall intensity was obtained at the spatial collection angle of 14°.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA