Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 40(1): 22-36, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896561

RESUMO

In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.


Assuntos
Comunicação Animal , Rede Nervosa/fisiologia , Rombencéfalo/fisiologia , Vocalização Animal/fisiologia , Xenopus laevis/fisiologia , Estimulação Acústica , Animais , Cartilagem Aritenoide/fisiologia , Evolução Biológica , Geradores de Padrão Central/fisiologia , Feminino , Hormônios Esteroides Gonadais/fisiologia , Técnicas In Vitro , Músculos Laríngeos/fisiologia , Nervos Laríngeos/fisiologia , Masculino , Bulbo/fisiologia , Neurotransmissores/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Comportamento Social , Especificidade da Espécie
2.
Genesis ; 55(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095617

RESUMO

The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.


Assuntos
Prosencéfalo/fisiologia , Rombencéfalo/fisiologia , Vocalização Animal/fisiologia , Xenopus laevis/fisiologia , Animais , Expiração/fisiologia , Técnicas de Cultura de Órgãos
3.
J Acoust Soc Am ; 133(1): 389-404, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23297911

RESUMO

Attempts to relate the perceptual dimensions of timbre to quantitative acoustical dimensions have been tenuous, leading to claims that timbre is an emergent property, if measurable at all. Here, a three-pronged analysis shows that the timbre space of sustained instrument tones occupies 5 dimensions and that a specific combination of acoustic properties uniquely determines gestalt perception of timbre. Firstly, multidimensional scaling (MDS) of dissimilarity judgments generated a perceptual timbre space in which 5 dimensions were cross-validated and selected by traditional model comparisons. Secondly, subjects rated tones on semantic scales. A discriminant function analysis (DFA) accounting for variance of these semantic ratings across instruments and between subjects also yielded 5 significant dimensions with similar stimulus ordination. The dimensions of timbre space were then interpreted semantically by rotational and reflectional projection of the MDS solution into two DFA dimensions. Thirdly, to relate this final space to acoustical structure, the perceptual MDS coordinates of each sound were regressed with its joint spectrotemporal modulation power spectrum. Sound structures correlated significantly with distances in perceptual timbre space. Contrary to previous studies, most perceptual timbre dimensions are not the result of purely temporal or spectral features but instead depend on signature spectrotemporal patterns.


Assuntos
Acústica , Música , Percepção da Altura Sonora , Estimulação Acústica , Adulto , Algoritmos , Audiometria , Análise Discriminante , Discriminação Psicológica , Feminino , Análise de Fourier , Humanos , Julgamento , Masculino , Modelos Psicológicos , Discriminação da Altura Tonal , Psicoacústica , Reprodutibilidade dos Testes , Espectrografia do Som , Fatores de Tempo , Adulto Jovem
4.
J Neurophysiol ; 105(4): 1620-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289132

RESUMO

Perception of the temporal structure of acoustic signals contributes critically to vocal signaling. In the aquatic clawed frog Xenopus laevis, calls differ primarily in the temporal parameter of click rate, which conveys sexual identity and reproductive state. We show here that an ensemble of auditory neurons in the laminar nucleus of the torus semicircularis (TS) of X. laevis specializes in encoding vocalization click rates. We recorded single TS units while pure tones, natural calls, and synthetic clicks were presented directly to the tympanum via a vibration-stimulation probe. Synthesized click rates ranged from 4 to 50 Hz, the rate at which the clicks begin to overlap. Frequency selectivity and temporal processing were characterized using response-intensity curves, temporal-discharge patterns, and autocorrelations of reduplicated responses to click trains. Characteristic frequencies ranged from 140 to 3,250 Hz, with minimum thresholds of -90 dB re 1 mm/s at 500 Hz and -76 dB at 1,100 Hz near the dominant frequency of female clicks. Unlike units in the auditory nerve and dorsal medullary nucleus, most toral units respond selectively to the behaviorally relevant temporal feature of the rate of clicks in calls. The majority of neurons (85%) were selective for click rates, and this selectivity remained unchanged over sound levels 10 to 20 dB above threshold. Selective neurons give phasic, tonic, or adapting responses to tone bursts and click trains. Some algorithms that could compute temporally selective receptive fields are described.


Assuntos
Comunicação Animal , Nervo Coclear/fisiologia , Mesencéfalo/fisiologia , Vocalização Animal/fisiologia , Xenopus laevis/fisiologia , Estimulação Acústica , Algoritmos , Animais , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Masculino , Comportamento Sexual Animal/fisiologia
5.
PLoS Comput Biol ; 5(3): e1000302, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19266016

RESUMO

We systematically determined which spectrotemporal modulations in speech are necessary for comprehension by human listeners. Speech comprehension has been shown to be robust to spectral and temporal degradations, but the specific relevance of particular degradations is arguable due to the complexity of the joint spectral and temporal information in the speech signal. We applied a novel modulation filtering technique to recorded sentences to restrict acoustic information quantitatively and to obtain a joint spectrotemporal modulation transfer function for speech comprehension, the speech MTF. For American English, the speech MTF showed the criticality of low modulation frequencies in both time and frequency. Comprehension was significantly impaired when temporal modulations <12 Hz or spectral modulations <4 cycles/kHz were removed. More specifically, the MTF was bandpass in temporal modulations and low-pass in spectral modulations: temporal modulations from 1 to 7 Hz and spectral modulations <1 cycles/kHz were the most important. We evaluated the importance of spectrotemporal modulations for vocal gender identification and found a different region of interest: removing spectral modulations between 3 and 7 cycles/kHz significantly increases gender misidentifications of female speakers. The determination of the speech MTF furnishes an additional method for producing speech signals with reduced bandwidth but high intelligibility. Such compression could be used for audio applications such as file compression or noise removal and for clinical applications such as signal processing for cochlear implants.


Assuntos
Percepção Auditiva , Fala , Feminino , Humanos , Masculino
6.
Artigo em Inglês | MEDLINE | ID: mdl-17989982

RESUMO

The clawed frog Xenopus laevis produces vocalizations consisting of distinct patterns of clicks. This study provides the first description of spontaneous, pure-tone and communication-signal evoked discharge properties of auditory nerve (n.VIII) fibers and dorsal medullary nucleus (DMN) cells in an obligatorily aquatic anuran. Responses of 297 n.VIII and 253 DMN units are analyzed for spontaneous rates (SR), frequency tuning, rate-intensity functions, and firing rate adaptation, with a view to how these basic characteristics shape responses to recorded call stimuli. Response properties generally resemble those in partially terrestrial anurans. Broad tuning exists across characteristic frequencies (CFs). Threshold minima are -101 dB re 1 mm/s at 675 Hz; -87 dB at 1,600 Hz; and -61 dB at 3,000 Hz (-90, -77, and -44 dB re 1 Pa, respectively), paralleling the peak frequency of vocalizations at 1.2-1.6 kHz with approximately 500 Hz in 3 dB bandwidth. SRs range from 0 to 80 (n.VIII) and 0 to 73 spikes/s (DMN). Nerve and DMN units of all CFs follow click rates in natural calls, < or =67 clicks/s and faster. Units encode clicks with a single spike, double spikes, or bursts. Spike times correlate closely with click envelopes. No temporal filtering for communicative click rates occurs in either n.VIII or the DMN.


Assuntos
Potenciais de Ação/fisiologia , Nervo Coclear/fisiologia , Bulbo/fisiologia , Vocalização Animal/fisiologia , Xenopus laevis/anatomia & histologia , Estimulação Acústica/métodos , Animais , Audiometria , Vias Auditivas/fisiologia , Relação Dose-Resposta à Radiação , Orelha Média/fisiologia , Feminino , Masculino , Bulbo/citologia , Neurônios Aferentes/fisiologia , Orientação/fisiologia , Limiar Sensorial/fisiologia , Fatores Sexuais , Xenopus laevis/fisiologia
7.
J Exp Biol ; 210(Pt 16): 2836-42, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17690231

RESUMO

In murky, crowded ponds in South Africa, female clawed frogs, Xenopus laevis (Daudin), vocalize to signal reproductive state. Female calls consist of acoustically similar clicks delivered in trains with characteristic rates. The rapping call of a sexually receptive female has a more rapid click rate [81 ms mean interclick interval (ICI)] than the ticking call of an unreceptive female (219 ms ICI). Rapping stimulates male advertisement calling, whereas ticking suppresses an already calling male. We examined how males label and discriminate female click rates. A labeling boundary experiment revealed that males perceive click rates between the means of rapping and ticking as lying on a continuum. They respond to 98 and 160 ms ICI as though to rapping and ticking, respectively. However, calling evoked by a click rate equally common to both calls (120 ms ICI) did not differ from the response to either rapping or ticking. A second experiment evaluated whether males discriminate click rates both labeled as ticking (180 and 219 ms ICI). Ticking suppresses advertising males, and suppressed males habituate (resume calling) to prolonged ticking. Both ticking stimuli suppressed males with equal effectiveness, and males habituated in equivalent amounts of time. When the stimulus was switched during habituation, no dishabituation occurred. We conclude that male labeling of click trains as rapping or ticking reflects an ambiguity resulting from the overlap in ICIs naturally occurring in the calls. Males do not respond differentially to click rates within the ticking category. Males thus combine discriminating and non-discriminating strategies in responding to the salient feature of female calls.


Assuntos
Ranidae/fisiologia , Comportamento Sexual Animal/fisiologia , Vocalização Animal/fisiologia , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA