Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0308792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39146282

RESUMO

BACKGROUND: The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS: We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS: Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION: GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Glutationa , Lobo Occipital , Humanos , Masculino , Feminino , Glutationa/metabolismo , Glutationa/análise , Adulto , Lobo Occipital/metabolismo , Lobo Occipital/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Adulto Jovem , Espectroscopia de Prótons por Ressonância Magnética , Lobo Frontal/metabolismo , Estresse Oxidativo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem
2.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467434

RESUMO

Alterations in γ-aminobutyric acid (GABA) have been implicated in sensory differences in individuals with autism spectrum disorder (ASD). Visual signals are initially processed in the retina, and in this study, we explored the hypotheses that the GABA-dependent retinal response to light is altered in individuals with ASD. Light-adapted electroretinograms were recorded from 61 adults (38 males and 23 females; n = 22 ASD) in response to three stimulus protocols: (1) the standard white flash, (2) the standard 30 Hz flickering protocol, and (3) the photopic negative response protocol. Participants were administered an oral dose of placebo, 15 or 30 mg of arbaclofen (STX209, GABAB agonist) in a randomized, double-blind, crossover order before the test. At baseline (placebo), the a-wave amplitudes in response to single white flashes were more prominent in ASD, relative to typically developed (TD) participants. Arbaclofen was associated with a decrease in the a-wave amplitude in ASD, but an increase in TD, eliminating the group difference observed at baseline. The extent of this arbaclofen-elicited shift significantly correlated with the arbaclofen-elicited shift in cortical responses to auditory stimuli as measured by using an electroencephalogram in our prior study and with broader autistic traits measured with the autism quotient across the whole cohort. Hence, GABA-dependent differences in retinal light processing in ASD appear to be an accessible component of a wider autistic difference in the central processing of sensory information, which may be upstream of more complex autistic phenotypes.


Assuntos
Transtorno do Espectro Autista , Masculino , Adulto , Feminino , Humanos , Transtorno do Espectro Autista/tratamento farmacológico , Retina , Eletroencefalografia , Ácido gama-Aminobutírico , Eletrorretinografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA