Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(5): 558-564, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38635370

RESUMO

In this study, porous poly(butylene terephthalate) (PBT) fibers were produced by melt blowing cocontinuous blends of PBT and polystyrene (PS) and selectively extracting the interconnected PS domains. Small amounts of hydroxyl terminated PS additives that can undergo transesterification with the ester units in PBT were added to stabilize the cocontinuous structure during melt processing. The resulting fibers are highly ductile and display fine porous structural features, which persist at temperatures over 150 °C. Single fiber tensile testing and electron microscopy are presented to demonstrate the role of rapid quenching and drawing of the melt blowing process in defining the fiber properties. The templated highly aligned pore structure, which is not easily produced in solvent-based fiber spinning methods, leads to remarkable mechanical properties of the porous fibers and overcomes the notoriously poor tensile properties common to other cellular materials like foams.

2.
ACS Macro Lett ; 13(4): 382-388, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38478981

RESUMO

Self-consistent field theory for thin films of AB diblock polymers in the double-gyroid phase reveals that in the absence of preferential wetting of monomer species at the film boundaries, films with the (211) plane oriented parallel to the boundaries are more stable than other orientations, consistent with experimental results. This preferred orientation is explained in the context of boundary frustration. Specifically, the angle of intersection between the A/B interface and the film boundary, the wetting angle, is thermodynamically restricted to a narrow range of values. Most termination planes in the double gyroid cannot accommodate this narrow range of wetting angles without significant local distortion relative to the bulk morphology; the (211)-oriented termination plane with the "double-wave" pattern produces relatively minimal distortion, making it the least frustrated boundary. The principle of boundary frustration provides a framework to understand the relative stability of termination planes for complex ordered block polymer phases confined between flat, nonpreferential boundaries.

4.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987518

RESUMO

Block copolymers at homopolymer interfaces are poised to play a critical role in the compatibilization of mixed plastic waste, an area of growing importance as the rate of plastic accumulation rapidly increases. Using molecular dynamics simulations of Kremer-Grest polymer chains, we have investigated how the number of blocks and block degree of polymerization in a linear multiblock copolymer impacts the interface thermodynamics of strongly segregated homopolymer blends, which is key to effective compatibilization. The second virial coefficient reveals that interface thermodynamics are more sensitive to block degree of polymerization than to the number of blocks. Moreover, we identify a strong correlation between surface pressure (reduction of interfacial tension) and the spatial uniformity of block junctions on the interface, yielding a morphological framework for interpreting the role of compatibilizer architecture (number of blocks) and block degree of polymerization. These results imply that, especially at high interfacial loading, the choice of architecture of a linear multiblock copolymer compatibilizing surfactant does not greatly affect the modification of interfacial tension.

5.
Proc Natl Acad Sci U S A ; 120(34): e2301352120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579167

RESUMO

Management of the plastic industry is a momentous challenge, one that pits enormous societal benefits against an accumulating reservoir of nearly indestructible waste. A promising strategy for recycling polyethylene (PE) and isotactic polypropylene (iPP), constituting roughly half the plastic produced annually worldwide, is melt blending for reformulation into useful products. Unfortunately, such blends are generally brittle and useless due to phase separation and mechanically weak domain interfaces. Recent studies have shown that addition of small amounts of semicrystalline PE-iPP block copolymers (ca. 1 wt%) to mixtures of these polyolefins results in ductility comparable to the pure materials. However, current methods for producing such additives rely on expensive reagents, prohibitively impacting the cost of recycling these inexpensive commodity plastics. Here, we describe an alternative strategy that exploits anionic polymerization of butadiene into block copolymers, with subsequent catalytic hydrogenation, yielding E and X blocks that are individually melt miscible with PE and iPP, where E and X are poly(ethylene-ran-ethylethylene) random copolymers with 6 wt% and 90 wt% ethylethylene repeat units, respectively. Cooling melt blended mixtures of PE and iPP containing 1 wt% of the triblock copolymer EXE of appropriate molecular weight, results in mechanical properties competitive with the component plastics. Blend toughness is obtained through interfacial topological entanglements of the amorphous X polymer and semicrystalline iPP, along with anchoring of the E blocks through cocrystallization with the PE homopolymer. Significantly, EXE can be inexpensively produced using currently practiced industrial scale polymerization methods, offering a practical approach to recycling the world's top two plastics.

6.
ACS Macro Lett ; 12(7): 935-942, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37379686

RESUMO

Simultaneous ring-opening copolymerization is a powerful strategy for the synthesis of highly functional copolymers from different types of cyclic monomers. Although copolymers are essential to the plastics industry, environmental concerns associated with current fossil-fuel-based synthetic polymers have led to an increasing interest in the use of renewable feedstock for polymer synthesis. Herein, we report a scalable synthetic platform to afford unique polysaccharides with different pendant functional groups from biomass-derived levoglucosan and ε-caprolactone via cationic ring-opening copolymerization (cROCOP). Biocompatible and recyclable bismuth triflate was identified as the optimal catalyst for cROCOP of levoglucosan. Copolymers from tribenzyl levoglucosan and ε-caprolactone, as well as from tribenzyl and triallyl levoglucosan, were successfully synthesized. The tribenzyl levoglucosan monomer composition ranged from 16% to 64% in the copolymers with ε-caprolactone and 22% to 79% in the copolymers with triallyl levoglucosan. The allylic levoglucosan copolymer can be utilized as a renewably derived scaffold to modify copolymer properties and create other polymer architectures via postpolymerization modification. Monomer reactivity ratios were determined to investigate the copolymer microstructure, indicating that levoglucosan-based copolymers have a gradient architecture. Additionally, we demonstrated that the copolymer glass transition temperature (Tg, ranging from -44.3 to 33.8 °C), thermal stability, and crystallization behavior could be tuned based on the copolymer composition. Overall, this work underscores the utility of levoglucosan as a bioderived feedstock for the development of functional sugar-based copolymers with applications ranging from sustainable materials to biomaterials.

7.
Langmuir ; 39(17): 5970-5978, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37068129

RESUMO

Surface-tension gradients created along a polymer film by patterned photochemical reactions are a powerful tool for creating surface topography. Here, we use mathematical modeling to explore a strategy for patterning photochemically inactive polymers by coupling a light-sensitive and light-insensitive polymer to form a polymer bilayer. The light-sensitive polymer forms the top layer, and the most dominant surface-tension gradients are introduced at the interface between this layer and air. Lubrication theory is used to derive nonlinear partial differential equations describing the heights of each layer, and linear analysis and nonlinear simulations are performed to characterize interface dynamics. Patterns form at both the polymer-air and polymer-polymer interfaces at early thermal annealing times as a result of Marangoni stresses but decay on prolonged thermal annealing as a result of the dissipative mechanisms of capillary leveling and photoproduct diffusion, thus setting a limit to the maximum individual layer deformation. Simulations also show that the bottom-layer features can remain "trapped", i.e., exhibit no significant decay, even while the top layer topography has dissipated. We study the effects of two key parameters, the initial thickness ratio and the viscosity ratio of the two polymers, on the maximum deformation attained in the bottom layer and the time taken to attain this deformation. We identify regions of parameter space where the maximum bottom-layer deformation is enhanced and the attainment time is reduced. Overall, our study provides guidelines for designing processes to pattern photochemically inactive polymers and create interfacial topography in polymer bilayers.

8.
ACS Macro Lett ; 11(12): 1396-1402, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36469938

RESUMO

Polymer blend compatibilization is an attractive solution for mechanical recycling of mixed plastic waste because it can result in tough blends. In this work, hydroxy-telechelic polyethylene (HOPEOH) reactive additives were used to compatibilize blends of polyethylene terephthalate (PET) and linear low-density polyethylene (LLDPE). HOPEOH additives were synthesized with molar masses of 1-20 kg/mol by ring-opening metathesis polymerization of cyclooctene followed by catalytic hydrogenation. Melt-compounded blends containing 0.5 wt % HOPEOH displayed reduced dispersed phase LLDPE particle sizes with ductilities comparable to virgin PET and almost seven times greater than neat blends, regardless of additive molar mass. In contrast, analogous blends containing monohydroxy PE additives of comparable molar masses did not result in compatibilization even at 2 wt % loading. The results strongly suggest that both hydroxy ends of HOPEOH undergo transesterification reactions during melt mixing with PET to form predominantly PET-PE-PET triblock copolymers at the interface of the dispersed and matrix phases. We hypothesize that the triblock copolymer compatibilizers localized at the interface form trapped entanglements of the PE midblocks with nearby LLDPE homopolymer chains by a hook-and-clasp mechanism. Finally, HOPEOH compounds were able to efficiently compatibilize blends derived solely from postconsumer PET and PE bottles and film, suggesting their industrial applicability.


Assuntos
Plásticos , Polietileno , Polietilenotereftalatos , Polímeros , Reciclagem/métodos
9.
ACS Appl Mater Interfaces ; 14(43): 49244-49253, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279408

RESUMO

Porous structures are ubiquitous in nature due to their advantageous mechanical and transport properties. These structures have inspired various synthetic porous polymer technologies, including lightweight structural materials and membranes. While many manufacturing processes have been developed to generate porous thermoplastics, these usually include hazardous processes, such as high pressures and temperatures, or chemical components. Furthermore, few are compatible with additive manufacturing methods, such as 3D printing. Herein, we introduce bio-derived terpene camphene as a solvent and porogen for the freeze-casting of thermoplastic parts under mild conditions. Enabled by a low melting point (50 °C), camphene is used as a solvent for melt processing camphene-polymer solutions at moderate temperatures that later undergo room-temperature crystallization to template polymer-rich domains. Due to its high vapor pressure, camphene can be sublimed directly from these biphasic structures, resulting in an interconnected microporous polymer structure. Various polymers are demonstrated to be soluble in camphene, including polystyrene, an olefinic elastomer, a polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene elastomer, a cyclic olefin copolymer, and poly(ethyl methacrylate). Porous samples of each polymer were generated from camphene mixtures via compression molding, cooling, and subsequent vacuum annealing at room temperature to remove camphene. The porosity and pore structures were dependent on solution composition, including both the polymer type and polymer loading. Across the compositions investigated, porosity decreased monotonically from 93 to 65% with increasing polymer content. In the case of polystyrene, samples with pore diameters varying from ∼20 to <5 µm were generated. Rheological measurements were conducted on a series of polystyrene-camphene solutions to understand and optimize the formulation and conditions for direct ink write 3D printing. Porous parts with complex structures were successfully printed under mild conditions. These results underscore the advantages of camphene as a sustainable, nontoxic porogen and will inform future development of porous polymer systems derived from these methods.

10.
ACS Appl Mater Interfaces ; 14(40): 45240-45253, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173292

RESUMO

Free-standing electrode (FSE) architectures hold the potential to dramatically increase the gravimetric and volumetric energy density of lithium-ion batteries (LIBs) by eliminating the parasitic dead weight and volume associated with traditional metal foil current collectors. However, current FSE fabrication methods suffer from insufficient mechanical stability, electrochemical performance, or industrial adoptability. Here, we demonstrate a scalable camphene-assisted fabrication method that allows simultaneous casting and templating of FSEs comprising common LIB materials with a performance superior to their foil-cast counterparts. These porous, lightweight, and robust electrodes simultaneously enable enhanced rate performance by improving the mass and ion transport within the percolating conductive carbon pore network and eliminating current collectors for efficient and stable Li+ storage (>1000 cycles in half-cells) at increased gravimetric and areal energy densities. Compared to conventional foil-cast counterparts, the camphene-derived electrodes exhibit ∼1.5× enhanced gravimetric energy density, increased rate capability, and improved capacity retention in coin-cell configurations. A full cell containing both a free-standing anode and cathode was cycled for over 250 cycles with greater than 80% capacity retention at an areal capacity of 0.73 mA h/cm2. This active-material-agnostic electrode fabrication method holds potential to tailor the morphology of flexible, current-collector-free electrodes, thus enabling LIBs to be optimized for high power or high energy density Li+ storage. Furthermore, this platform provides an electrode fabrication method that is applicable to other electrochemical technologies and advanced manufacturing methods.

11.
J Am Chem Soc ; 144(34): 15727-15734, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35981404

RESUMO

Creation of strong and tough plastics from sustainable and biorenewable resources is a significant challenge in polymer science. This challenge is further complicated when attempting to make these materials using an economically viable process, which is often hindered by the production and availability of chemical feedstocks and the efficiency of the monomer synthesis. Herein, we report the synthesis and characterization of a strong thermoplastic made from 2,3-dihydrofuran (DHF), a monomer made in one step from 1,4-butanediol, a bioalcohol already produced on the plant scale. We developed a green, metal-free cationic polymerization to enable the production of poly(2,3-dihydrofuran) (PDHF) with molecular weights of up to 256 kg/mol at room temperature. Characterization of these polymers showed that PDHF possesses high tensile strength and toughness (70 and 14 MPa, respectively) comparable to commercial polycarbonate, high optical clarity, and good barrier properties to oxygen, carbon dioxide, and water. These properties make this material amenable to a variety of applications, from food packaging to high strength windows. Importantly, we have also developed a facile oxidative degradation process of PDHF, providing an end-of-life solution for PDHF materials.


Assuntos
Furanos , Polímeros , Cátions , Plásticos , Polimerização , Polímeros/química , Temperatura
12.
Proc Natl Acad Sci U S A ; 119(33): e2201776119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943987

RESUMO

Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments.


Assuntos
Bioengenharia , Biomimética , Polimerização , Robótica , Agaricales/crescimento & desenvolvimento , Bioengenharia/métodos , Biomimética/métodos , Movimento , Desenvolvimento Vegetal
13.
Chem Sci ; 13(16): 4512-4522, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656133

RESUMO

We report the facile synthesis and characterization of 1,6-α linked functional stereoregular polysaccharides from biomass-derived levoglucosan via cationic ring-opening polymerization (cROP). Levoglucosan is a bicyclic acetal with rich hydroxyl functionality, which can be synthetically modified to install a variety of pendant groups for tailored properties. We have employed biocompatible and recyclable metal triflate catalysts - scandium and bismuth triflate - for green cROP of levoglucosan derivatives, even at very low catalyst loadings of 0.5 mol%. Combined experimental and computational studies provided key kinetic, thermodynamic, and mechanistic insights into the cROP of these derivatives with metal triflates. Computational studies reveal that ring-opening of levoglucosan derivatives is preferred at the 1,6 anhydro linkage and cROP proceeds in a regio- and stereo-specific manner to form 1,6-α glycosidic linkages. DFT calculations also show that biocompatible metal triflates efficiently coordinate with levoglucosan derivatives as compared to the highly toxic PF5 used previously. Post-polymerization modification of levoglucosan-based polysaccharides is readily performed via UV-initiated thiol-ene click reactions. The reported levoglucosan based polymers exhibit good thermal stability (T d > 250 °C) and a wide glass transition temperature (T g) window (<-150 °C to 32 °C) that is accessible with thioglycerol and lauryl mercaptan pendant groups. This work demonstrates the utility of levoglucosan as a renewably-derived scaffold, enabling facile access to tailored polysaccharides that could be important in many applications ranging from sustainable materials to biologically active polymers.

14.
Langmuir ; 38(24): 7400-7412, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35671396

RESUMO

Thin liquid polymer films can be topographically patterned when polymer/air interfaces are deformed by surface-tension gradients. Toward this end, a recently developed method first photochemically patterns surface-tension gradients along a solid, flat polymer film. On heating to the liquid state, the film initially develops topography reflecting the patterned surface-tension gradients. But capillary leveling and diffusion of the photoproduct oppose this causing the features to eventually decay back to a flat film upon extended thermal annealing. Intuitively, this interplay between competing mechanisms sets a limit on the maximum film deformation during the process. Prior studies show that the initial film thickness, photomask periodicity, and amount of photochemical conversion significantly affect the maximum film deformation. Here, we use a model based on lubrication theory to develop additional insights into this observation. We identify two regimes, capillary-leveling-dominated and photoproduct-diffusion-dominated, wherein the respective dominant mechanism determines the maximum film deformation that can be additionally related to various experimental parameters. Scaling laws for the variation of maximum film deformation and aspect ratio with film thickness and surface-tension pattern periodicity are also developed. Complementary experiments show good agreement with model predictions. Insights into the effect of surface-tension pattern asymmetry on the maximum film deformation are also provided. These findings reveal mechanistic detail and fundamental principles that are useful for controlling the process to form target patterns of interest.

15.
JACS Au ; 2(2): 310-321, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35252981

RESUMO

Properly addressing the global issue of unsustainable plastic waste generation and accumulation will require a confluence of technological breakthroughs on various fronts. Mechanical recycling of plastic waste into polymer blends is one method expected to contribute to a solution. Due to phase separation of individual components, mechanical recycling of mixed polymer waste streams generally results in an unsuitable material with substantially reduced performance. However, when an appropriately designed compatibilizer is used, the recycled blend can have competitive properties to virgin materials. In its current state, polymer blend compatibilization is usually not cost-effective compared to traditional waste management, but further technical development and optimization will be essential for driving future cost competitiveness. Historically, effective compatibilizers have been diblock copolymers or in situ generated graft copolymers, but recent progress shows there is great potential for multiblock copolymer compatibilizers. In this perspective, we lay out recent advances in synthesis and understanding for two types of multiblock copolymers currently being developed as blend compatibilizers: linear and graft. Importantly, studies of appropriately designed copolymers have shown them to efficiently compatibilize model binary blends at concentrations as low as ∼0.2 wt %. These investigations pave the way for studies on more complex (ternary or higher) mixed waste streams that will require novel compatibilizer architectures. Given the progress outlined here, we believe that multiblock copolymers offer a practical and promising solution to help close the loop on plastic waste. While a complete discussion of the implementation of this technology would entail infrastructural, policy, and social developments, they are outside the scope of this perspective which instead focuses on material design considerations and the technical advancements of block copolymer compatibilizers.

16.
Chem Rev ; 122(6): 6322-6373, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133803

RESUMO

Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.


Assuntos
Polímeros , Polímeros/química
17.
J Am Chem Soc ; 143(38): 15784-15790, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529416

RESUMO

Polyesters constitute nearly 10% of the global plastic market, but most are essentially non-degradable under ambient conditions or in engineered environments. A range of degradable polyesters have been developed as more sustainable alternatives; however, limitations of practical degradability and scalability have hindered their viability. Here, we utilized transesterification approaches, including in situ polymerization-transesterification, between a salicylate and a polyester to incorporate salicylate units into commercial polyester backbones. The strategy is scalable and practically relevant given that high molar mass polymers can be obtained from melt-processing of commercial polyesters using common compounders or extruders. Polylactide containing sparse salicylate moieties shows enhanced hydrolytic degradability in aqueous buffer, seawater, and alkaline solutions without sacrificing the thermal, mechanical, and O2 barrier properties of the parent material. Additionally, salicylate sequences were incorporated into polycaprolactone and a derivative of poly(ethylene terephthalate), and those modified polymers also exhibited facile degradation behavior in alkaline solution, further expanding the scope of this approach. This work provides insights and direction for the development of high-performance yet more sustainable and degradable alternatives to conventional polyesters.

18.
Nano Lett ; 21(18): 7587-7594, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34460249

RESUMO

We describe a straightforward self-assembly route to nanoporous materials derived from a hexagonally-packed cylinder (HEX) morphology of a polyisoprene-block-polylactide (PI-b-PLA) diblock copolymer, by thermal cross-linking of the minority PI domains followed by selective chemical etching of the PLA matrix. The resulting mechanically stable and porous samples defy the expectation that the remaining cylinders cannot yield a robust, integrated material upon matrix removal. Scanning electron microscopy imaging reveals that this unexpected structural integrity stems from the interconnected nanofibrils therein, reflecting topological defects at the grain boundaries of the parent polydomain HEX nanostructure. Hydrodynamic radius-dependent poly(ethylene oxide) (Mn = 0.4-35 kg/mol) permeation behavior through these monoliths directly demonstrated the continuity and size selectivity of the nanoporous material. The ready accessibility of block copolymer HEX morphologies of varied chemistries suggests that this matrix etching strategy will enable the future design of functional, size-selective nanofiltration membrane materials.

19.
Langmuir ; 37(22): 6660-6672, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047566

RESUMO

Liquid-air interfaces can be deformed by surface-tension gradients to create topography, a phenomenon useful for polymer film patterning. A recently developed method creates these gradients by photochemically patterning a solid polymer film. Heating the film to the liquid state leads to flow driven by the patterned surface-tension gradients, but capillary leveling and diffusion of surface-active species facilitate eventual dissipation of the topography. However, experiments demonstrate that using blends of high- and low-molar-mass polymers can considerably delay the decay in topography. To gain insight into this observation, we develop a model based on lubrication theory that yields coupled nonlinear partial differential equations describing how the film height and species concentrations evolve with time and space. Incorporation of a nonmonotonic disjoining pressure is found to significantly increase the lifetime of topographical features, making the model predictions qualitatively consistent with experiments. A parametric study reveals the key variables controlling the kinetics of film deformation and provides guidelines for photochemically induced Marangoni patterning of polymer films.

20.
J Phys Chem B ; 125(1): 450-460, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33400517

RESUMO

Poly(ethylene terephthalate) (PET) is one of the most prevalent polymers in the world due to its combined thermal, mechanical, and gas barrier attributes. Blending PET with other polymers is an appealing strategy to further tailor properties to meet the needs of an even more diverse range of applications. Most blends with PET are macrophase-separated; only a few miscible systems have been reported. Here, the miscibility of the aromatic polyesters poly(salicylic glycolide) (PSG) and poly(salicylic methyl glycolide) (PSMG) with PET is described. Both PSG and PSMG have similar chemical structures to PET but are derived from sustainable resources and readily degradable. This study suggests that they are fully miscible with PET over the entire composition range, which is attributed to favorable interactions with PET. Negative polymer-polymer interaction parameters (χ) were determined using Flory-Huggins theory to describe melting temperature variations in the blends. In addition, the PET blends showed mechanical properties that are intermediate between the two homopolymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA