Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2316723121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478686

RESUMO

Many environmental and industrial processes depend on how fluids displace each other in porous materials. However, the flow dynamics that govern this process are still poorly understood, hampered by the lack of methods to measure flows in optically opaque, microscopic geometries. We introduce a 4D microvelocimetry method based on high-resolution X-ray computed tomography with fast imaging rates (up to 4 Hz). We use this to measure flow fields during unsteady-state drainage, injecting a viscous fluid into rock and filter samples. This provides experimental insight into the nonequilibrium energy dynamics of this process. We show that fluid displacements convert surface energy into kinetic energy. The latter corresponds to velocity perturbations in the pore-scale flow field behind the invading fluid front, reaching local velocities more than 40 times faster than the constant pump rate. The characteristic length scale of these perturbations exceeds the characteristic pore size by more than an order of magnitude. These flow field observations suggest that nonlocal dynamic effects may be long-ranged even at low capillary numbers, impacting the local viscous-capillary force balance and the representative elementary volume. Furthermore, the velocity perturbations can enhance unsaturated dispersive mixing and colloid transport and yet, are not accounted for in current models. Overall, this work shows that 4D X-ray velocimetry opens the way to solve long-standing fundamental questions regarding flow and transport in porous materials, underlying models of, e.g., groundwater pollution remediation and subsurface storage of CO2 and hydrogen.

2.
Sci Data ; 11(1): 78, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228647

RESUMO

The present work investigates the effect of both surface roughness and particle morphology on the retention behaviour of granular materials via X-ray micro-computed tomography (µCT) observations. X-ray µCT images were taken on two types of spherical glass beads (i.e. smooth and rough) and two different sands (i.e. natural and roughened). Each sample was subjected to drainage and soaking paths consisting in a multiphase 'static' flow of potassium iodine (KI) brine (wetting phase) and dry air (non-wetting phase). Tomograms were obtained at different saturation states ranging from fully brine saturated to air dry conditions with 6.2 µm voxel size resolution. The data acquisition and pre-processing are here described while all data, a total of 48 tomograms, are made publicly available. The combined dataset offers new opportunities to study the influence of surface roughness and particle morphology on capillary actions as well as supporting validation of pore-scale models of multiphase flow in granular materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA