Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(2): 499-505, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34553491

RESUMO

BACKGROUND: Turfgrass managers reported poor Eleusine indica control following applications of the mitosis-inhibiting herbicide dithiopyr in cool-season turfgrass. Field, glasshouse, and laboratory experiments were conducted to understand the response of these biotypes to dithiopyr and prodiamine. RESULTS: In field experiments at two locations with putative dithiopyr-resistant E. indica, preemergence applications of dithiopyr provided no E. indica control. Single applications of the protoporphyrinogen oxidase (PPO)-inhibitor, oxadiazon, provided > 85% control at these locations. When subjected to agar-based bioassays, root growth of putative resistant biotypes planted with 0.01 mmol L-1 dithiopyr was slightly reduced (< 25%) whereas roots were completely inhibited in the susceptible biotype. Glasshouse whole plant rate-response experiments found that the cytochrome P450 inhibitor, piperonyl butoxide (PBO), did not increase the sensitivity of these putative resistant biotypes to dithiopyr. Sequencing of α-tubulin 1 (TUA1) revealed a Leu-136-Phe substitution in both dithiopyr-resistant populations. CONCLUSION: Eleusine indica biotypes with resistance to dithiopyr are present in cool-season turfgrass systems in the United States. Resistance is possibly related to a single nucleotide polymorphism (SNP) of an α-tubulin gene. If turfgrass managers suspect resistance to dithiopyr, oxadiazon can still be an effective alternative for preemergence control. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Eleusine , Herbicidas , Eleusine/genética , Resistência a Herbicidas , Herbicidas/farmacologia , Piridinas , Estações do Ano
2.
Sci Rep ; 10(1): 20579, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239643

RESUMO

Experiments were conducted to understand environmental effects on efficacy of herbicides used to control goosegrass (Eleusine indica L. Gaertn.). Herbicides were applied to goosegrass maintained at soil moisture contents (VMC) of < 12%, 12 to 20%, or > 20%. Herbicides included fenoxaprop-p-ethyl (140 g ha-1), topramezone (25 g ha-1), foramsulfuron (44 g ha-1), 2,4-D + dicamba + MCPP + carfentrazone (860 + 80 + 270 + 28 g ha-1), and thiencarbazone-methyl + foramsulfuron + halosulfuron-methyl (22 + 45 + 69 g ha-1). Goosegrass control increased as VMC increased. Vapor pressure deficit (VPD) and air temperature were manipulated to determine effects of evaporative demand on foramsulfuron. Effects of soil drying were also studied following foramsulfuron application. Reductions in transpiration rate (TR) and leaf area were greatest with foramsulfuron applications to goosegrass in silt-loam under high evaporative demand (3 kPa VPD, 38 °C). Foramsulfuron had no effect on goosegrass in silica-sand regardless of evaporative demand. TR dropped to 0.2 mmh-1 within eight days after application to goosegrass in silt-loam compared to 18 days in silica-sand. Overall, foramsulfuron efficacy on goosegrass was maximized under conditions of high soil moisture and evaporative demand, and may be reduced in sandy soils that hold less water.

3.
Pest Manag Sci ; 75(10): 2558-2565, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31228333

RESUMO

Endophytes are microbes (mostly bacteria and fungi) present asymptomatically in plants. Endophytic microbes are often functional in that they may carry nutrients from the soil into plants, modulate plant development, increase stress tolerance of plants, suppress virulence in pathogens, increase disease resistance in plants, and suppress development of competitor plant species. Endophytic microbes have been shown to: (i) obtain nutrients in soils and transfer nutrients to plants in the rhizophagy cycle and other nutrient-transfer symbioses; (ii) increase plant growth and development; (iii) reduce oxidative stress of hosts; (iv) protect plants from disease; (v) deter feeding by herbivores; and (vi) suppress growth of competitor plant species. Because of the effective functions of endophytic microbes, we suggest that endophytic microbes may significantly reduce use of agrochemicals (fertilizers, fungicides, insecticides, and herbicides) in the cultivation of crop plants. The loss of endophytic microbes from crop plants during domestication and long-term cultivation could be remedied by transfer of endophytes from wild relatives of crops to crop species. Increasing atmospheric carbon dioxide levels could reduce the efficiency of the rhizophagy cycle due to repression of reactive oxygen used to extract nutrients from microbes in roots. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Proteção de Cultivos/métodos , Produtos Agrícolas/microbiologia , Endófitos/fisiologia , Simbiose , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Fertilizantes/análise
4.
Microorganisms ; 7(5)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117261

RESUMO

Digitaria ischaemum (Schreb.) Schreb. ex Muhl. and Poa annua L. are competitive, early successional species which are usually considered weeds in agricultural and turfgrass systems. Bacteria and fungi associated with D. ischaemum and P. annua seed may contribute to their competitiveness by antagonizing competitor forbs, and were studied in axenic culture. Pantoea spp. were the most common bacterial isolate of D. ischaemum seed, while Epicoccum and Curvularia spp. were common fungal isolates. A variety of species were collected from non-surface sterilized P. annua. Certain Pantoea spp. isolates were antagonistic to competitor forbs Taraxacum officinale, Trifolium repens. All bacterial isolates that affected T. officinale mortality were isolated from D. ischaemum seed while none of the P. annua isolates affected mortality. Two selected bacterial isolates identified as Pantoea ananatis were evaluated further on D. ischaemum, T. repens (a competitor forb) and P. annua (a competitor grass) alone and in combination with a Curvularia sp. fungus. These bacteria alone caused >65% T. repens seedling mortality but did not affect P. annua seedling mortality. These experiments demonstrate that Pantoea ananatis associated with D. ischaemum seeds is antagonistic to competitor forbs in axenic culture. The weedy character of D. ischaemum could at least in part stem from the possession of bacteria that are antagonistic to competitor species.

5.
PLoS One ; 10(7): e0130947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186714

RESUMO

Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450 monooxygenase inhibitors 1-aminobenzotriazole (ABT) and malathion alone or in combination with the herbicide safener cloquintocet-mexyl influence creeping bentgrass tolerance to topramezone. Creeping bentgrass in hydroponic culture was treated with ABT (70 µM), malathion (70 µm and 1000 g ha(-1)), or cloquintocet-mexyl (70 µM and 1000 g ha(-1)) prior to topramezone (8 g ha(-1)) application. Topramezone-induced injury to creeping bentgrass increased from 22% when applied alone to 79 and 41% when applied with malathion or ABT, respectively. Cloquintocet-mexyl (70 µM and 1000 g ha(-1)) reduced topramezone injury to 1% and increased creeping bentgrass biomass and PSII quantum yield. Cloquintocet-mexyl mitigated the synergistic effects of ABT more than those of malathion. The effects of malathion on topramezone injury were supported by creeping bentgrass biomass responses. Responses to ABT and malathion suggest that creeping bentgrass tolerance to topramezone is influenced by cytochrome P450-catalyzed metabolism. Future research should elucidate primary topramezone metabolites and determine the contribution of cytochrome P450 monooxygenases and glutathione S-transferases to metabolite formation in safened and non-safened creeping bentgrass.


Assuntos
Agrostis/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Herbicidas/farmacologia , Malation/farmacologia , Pirazóis/farmacologia , Triazóis/farmacologia , Adaptação Fisiológica , Agrostis/enzimologia , Agrostis/crescimento & desenvolvimento , Biomassa , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Quinolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA