Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
IEEE Trans Vis Comput Graph ; 30(1): 230-239, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871077

RESUMO

Statisticians are not only one of the earliest professional adopters of data visualization, but also some of its most prolific users. Understanding how these professionals utilize visual representations in their analytic process may shed light on best practices for visual sensemaking. We present results from an interview study involving 18 professional statisticians (19.7 years average in the profession) on three aspects: (1) their use of visualization in their daily analytic work; (2) their mental models of inferential statistical processes; and (3) their design recommendations for how to best represent statistical inferences. Interview sessions consisted of discussing inferential statistics, eliciting participant sketches of suitable visual designs, and finally, a design intervention with our proposed visual designs. We analyzed interview transcripts using thematic analysis and open coding, deriving thematic codes on statistical mindset, analytic process, and analytic toolkit. The key findings for each aspect are as follows: (1) statisticians make extensive use of visualization during all phases of their work (and not just when reporting results); (2) their mental models of inferential methods tend to be mostly visually based; and (3) many statisticians abhor dichotomous thinking. The latter suggests that a multi-faceted visual display of inferential statistics that includes a visual indicator of analytically important effect sizes may help to balance the attributed epistemic power of traditional statistical testing with an awareness of the uncertainty of sensemaking.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37922170

RESUMO

Tactile graphics are one of the best ways for a blind person to perceive a chart using touch, but their fabrication is often costly, time-consuming, and does not lend itself to dynamic exploration. Refreshable haptic displays tend to be expensive and thus unavailable to most blind individuals. We propose TACTUALPLOT, an approach to sensory substitution where touch interaction yields auditory (sonified) feedback. The technique relies on embodied cognition for spatial awareness-i.e., individuals can perceive 2D touch locations of their fingers with reference to other 2D locations such as the relative locations of other fingers or chart characteristics that are visualized on touchscreens. Combining touch and sound in this way yields a scalable data exploration method for scatterplots where the data density under the user's fingertips is sampled. The sample regions can optionally be scaled based on how quickly the user moves their hand. Our development of TactualPlot was informed by formative design sessions with a blind collaborator, whose practice while using tactile scatterplots caused us to expand the technique for multiple fingers. We present results from an evaluation comparing our TactualPlot interaction technique to tactile graphics printed on swell touch paper.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37874715

RESUMO

What if magic could be used as an effective metaphor to perform data visualization and analysis using speech and gestures while mobile and on-the-go? In this paper, we introduce WIZUALIZATION, a visual analytics system for eXtended Reality (XR) that enables an analyst to author and interact with visualizations using such a magic system through gestures, speech commands, and touch interaction. Wizualization is a rendering system for current XR headsets that comprises several components: a cross-device (or ARCANE FOCUSES) infrastructure for signalling and view control (WEAVE), a code notebook (SPELLBOOK), and a grammar of graphics for XR (OPTOMANCY). The system offers users three modes of input: gestures, spoken commands, and materials. We demonstrate Wizualization and its components using a motivating scenario on collaborative data analysis of pandemic data across time and space.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37871052

RESUMO

We present aggregate query sculpting (AQS), a faceted visual query technique for large-scale multidimensional data. As a "born scalable" query technique, AQS starts visualization with a single visual mark representing an aggregation of the entire dataset. The user can then progressively explore the dataset through a sequence of operations abbreviated as P6: pivot (facet an aggregate based on an attribute), partition (lay out a facet in space), peek (see inside a subset using an aggregate visual representation), pile (merge two or more subsets), project (extracting a subset into a new substrate), and prune (discard an aggregate not currently of interest). We validate AQS with DATAOPSY, a prototype implementation of AQS that has been designed for fluid interaction on desktop and touch-based mobile devices. We demonstrate AQS and Dataopsy using two case studies and three application examples.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37310839

RESUMO

The advent of low-cost, accessible, and high-performance augmented reality (AR) has shed light on a situated form of analytics where in-situ visualizations embedded in the real world can facilitate sensemaking based on the user's physical location. In this work, we identify prior literature in this emerging field with a focus on the technologies enabling such situated analytics. After collecting 47 relevant situated analytics systems, we classify them using a taxonomy of three dimensions: situating triggers, view situatedness, and data depiction. We then identify four archetypical patterns in our classification using an ensemble cluster analysis. Finally, we discuss several insights and design guidelines that we learned from our analysis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37216254

RESUMO

As online news increasingly include data journalism, there is a corresponding increase in the incorporation of visualization in article thumbnail images. However, little research exists on the design rationale for visualization thumbnails, such as resizing, cropping, simplifying, and embellishing charts that appear within the body of the associated article. Therefore, in this paper we aim to understand these design choices and determine what makes a visualization thumbnail inviting and interpretable. To this end, we first survey visualization thumbnails collected online and discuss visualization thumbnail practices with data journalists and news graphics designers. Based on the survey and discussion results, we then define a design space for visualization thumbnails and conduct a user study with four types of visualization thumbnails derived from the design space. The study results indicate that different chart components play different roles in attracting reader attention and enhancing reader understandability of the visualization thumbnails. We also find various thumbnail design strategies for effectively combining the charts' components, such as a data summary with highlights and data labels, and a visual legend with text labels and Human Recognizable Objects (HROs), into thumbnails. Ultimately, we distill our findings into design implications that allow effective visualization thumbnail designs for data-rich news articles. Our work can thus be seen as a first step toward providing structured guidance on how to design compelling thumbnails for data stories.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37022364

RESUMO

Analyzing user behavior from usability evaluation can be a challenging and time-consuming task, especially as the number of participants and the scale and complexity of the evaluation grows. We propose UXSENSE, a visual analytics system using machine learning methods to extract user behavior from audio and video recordings as parallel time-stamped data streams. Our implementation draws on pattern recognition, computer vision, natural language processing, and machine learning to extract user sentiment, actions, posture, spoken words, and other features from such recordings. These streams are visualized as parallel timelines in a web-based front-end, enabling the researcher to search, filter, and annotate data across time and space. We present the results of a user study involving professional UX researchers evaluating user data using uxSense. In fact, we used uxSense itself to evaluate their sessions.

8.
IEEE Comput Graph Appl ; 43(4): 97-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37097789

RESUMO

The emerging practice of data-driven storytelling is framing data using familiar narrative mechanisms, such as slideshows, videos, and comics, to make even highly complex phenomena understandable. In this survey, we propose a taxonomy focused specifically on media types for the purpose of widening the purview of data-driven storytelling by putting more tools into the hands of designers. The classification shows that current data-driven storytelling practice does not yet leverage the full repertoire of media that can be used for storytelling, such as the spoken word, e-learning, and video games. Using our taxonomy as a generative tool, we also explore three novel storytelling mechanisms, including for live streaming, gesture-driven oral presentations, and data-driven comics.

9.
IEEE Trans Vis Comput Graph ; 29(6): 2980-2995, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35085082

RESUMO

We present Roslingifier, a data-driven storytelling method for animated scatterplots. Like its namesake, Hans Rosling (1948-2017), a professor of public health and a spellbinding public speaker, Roslingifier turns a sequence of entities changing over time-such as countries and continents with their demographic data-into an engaging narrative elling the story of the data. This data-driven storytelling method with an in-person presenter is a new genre of storytelling technique and has never been studied before. In this article, we aim to define a design space for this new genre-data presentation-and provide a semi-automated authoring tool for helping presenters create quality presentations. From an in-depth analysis of video clips of presentations using interactive visualizations, we derive three specific techniques to achieve this: natural language narratives, visual effects that highlight events, and temporal branching that changes playback time of the animation. Our implementation of the Roslingifier method is capable of identifying and clustering significant movements, automatically generating visual highlighting and a narrative for playback, and enabling the user to customize. From two user studies, we show that Roslingifier allows users to effectively create engaging data stories and the system features help both presenters and viewers find diverse insights.

10.
IEEE Trans Vis Comput Graph ; 29(12): 5372-5383, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173772

RESUMO

Idealized probability distributions, such as normal or other curves, lie at the root of confirmatory statistical tests. But how well do people understand these idealized curves? In practical terms, does the human visual system allow us to match sample data distributions with hypothesized population distributions from which those samples might have been drawn? And how do different visualization techniques impact this capability? This article shares the results of a crowdsourced experiment that tested the ability of respondents to fit normal curves to four different data distribution visualizations: bar histograms, dotplot histograms, strip plots, and boxplots. We find that the crowd can estimate the center (mean) of a distribution with some success and little bias. We also find that people generally overestimate the standard deviation-which we dub the "umbrella effect" because people tend to want to cover the whole distribution using the curve, as if sheltering it from the heavens above-and that strip plots yield the best accuracy.

11.
IEEE Trans Vis Comput Graph ; 29(12): 5282-5293, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36170400

RESUMO

We present an approach for interactively visualizing data using color-changing inks without the need for electronic displays or computers. Color-changing inks are a family of physical inks that change their color characteristics in response to an external stimulus such as heat, UV light, water, and pressure. Visualizations created using color-changing inks can embed interactivity in printed material without external computational media. In this article, we survey current color-changing ink technology and then use these findings to derive a framework for how it can be used to construct interactive data representations. We also enumerate the interaction techniques possible using this technology. We then show some examples of how to use color-changing ink to create interactive visualizations on paper. While obviously limited in scope to situations where no power or computing is present, or as a complement to digital displays, our findings can be employed for paper, data physicalization, and embedded visualizations.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36166520

RESUMO

Visual perception is a key component of data visualization. Much prior empirical work uses eye movement as a proxy to understand human visual perception. Diverse apparatus and techniques have been proposed to collect eye movements, but there is still no optimal approach. In this paper, we review 30 prior works for collecting eye movements based on three axes: (1) the tracker technology used to measure eye movements; (2) the image stimulus shown to participants; and (3) the collection methodology used to gather the data. Based on this taxonomy, we employ a webcam-based eyetracking approach using task-specific visualizations as the stimulus. The low technology requirement means that virtually anyone can participate, thus enabling us to collect data at large scale using crowdsourcing: approximately 12,000 samples in total. Choosing visualization images as stimulus means that the eye movements will be specific to perceptual tasks associated with visualization. We use these data to propose a SCANNER DEEPLY, a virtual eyetracker model that, given an image of a visualization, generates a gaze heatmap for that image. We employ a computationally efficient, yet powerful convolutional neural network for our model. We compare the results of our work with results from the DVS model and a neural network trained on the Salicon dataset. The analysis of our gaze patterns enables us to understand how users grasp the structure of visualized data. We also make our stimulus dataset of visualization images available as part of this paper's contribution.

13.
IEEE Trans Vis Comput Graph ; 28(1): 1084-1094, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587061

RESUMO

For all its potential in supporting data analysis, particularly in exploratory situations, visualization also creates barriers: accessibility for blind and visually impaired individuals. Regardless of how effective a visualization is, providing equal access for blind users requires a paradigm shift for the visualization research community. To enact such a shift, it is not sufficient to treat visualization accessibility as merely another technical problem to overcome. Instead, supporting the millions of blind and visually impaired users around the world who have equally valid needs for data analysis as sighted individuals requires a respectful, equitable, and holistic approach that includes all users from the onset. In this paper, we draw on accessibility research methodologies to make inroads towards such an approach. We first identify the people who have specific insight into how blind people perceive the world: orientation and mobility (O&M) experts, who are instructors that teach blind individuals how to navigate the physical world using non-visual senses. We interview 10 O&M experts-all of them blind-to understand how best to use sensory substitution other than the visual sense for conveying spatial layouts. Finally, we investigate our qualitative findings using thematic analysis. While blind people in general tend to use both sound and touch to understand their surroundings, we focused on auditory affordances and how they can be used to make data visualizations accessible-using sonification and auralization. However, our experts recommended supporting a combination of senses-sound and touch-to make charts accessible as blind individuals may be more familiar with exploring tactile charts. We report results on both sound and touch affordances, and conclude by discussing implications for accessible visualization for blind individuals.


Assuntos
Gráficos por Computador , Pessoas com Deficiência Visual , Cegueira , Humanos , Tato , Visão Ocular
14.
IEEE Trans Vis Comput Graph ; 27(2): 1332-1342, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33048692

RESUMO

Causality visualization can help people understand temporal chains of events, such as messages sent in a distributed system, cause and effect in a historical conflict, or the interplay between political actors over time. However, as the scale and complexity of these event sequences grows, even these visualizations can become overwhelming to use. In this paper, we propose the use of textual narratives as a data-driven storytelling method to augment causality visualization. We first propose a design space for how textual narratives can be used to describe causal data. We then present results from a crowdsourced user study where participants were asked to recover causality information from two causality visualizations-causal graphs and Hasse diagrams-with and without an associated textual narrative. Finally, we describe Causeworks, a causality visualization system for understanding how specific interventions influence a causal model. The system incorporates an automatic textual narrative mechanism based on our design space. We validate Causeworks through interviews with experts who used the system for understanding complex events.

15.
IEEE Trans Vis Comput Graph ; 27(2): 1073-1083, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33095716

RESUMO

Data visualizations convert numbers into visual marks so that our visual system can extract data from an image instead of raw numbers. Clearly, the visual system does not compute these values as a computer would, as an arithmetic mean or a correlation. Instead, it extracts these patterns using perceptual proxies; heuristic shortcuts of the visual marks, such as a center of mass or a shape envelope. Understanding which proxies people use would lead to more effective visualizations. We present the results of a series of crowdsourced experiments that measure how powerfully a set of candidate proxies can explain human performance when comparing the mean and range of pairs of data series presented as bar charts. We generated datasets where the correct answer-the series with the larger arithmetic mean or range-was pitted against an "adversarial" series that should be seen as larger if the viewer uses a particular candidate proxy. We used both Bayesian logistic regression models and a robust Bayesian mixed-effects linear model to measure how strongly each adversarial proxy could drive viewers to answer incorrectly and whether different individuals may use different proxies. Finally, we attempt to construct adversarial datasets from scratch, using an iterative crowdsourcing procedure to perform black-box optimization.

16.
IEEE Trans Vis Comput Graph ; 26(1): 1012-1021, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31443016

RESUMO

Perceptual tasks in visualizations often involve comparisons. Of two sets of values depicted in two charts, which set had values that were the highest overall? Which had the widest range? Prior empirical work found that the performance on different visual comparison tasks (e.g., "biggest delta", "biggest correlation") varied widely across different combinations of marks and spatial arrangements. In this paper, we expand upon these combinations in an empirical evaluation of two new comparison tasks: the "biggest mean" and "biggest range" between two sets of values. We used a staircase procedure to titrate the difficulty of the data comparison to assess which arrangements produced the most precise comparisons for each task. We find visual comparisons of biggest mean and biggest range are supported by some chart arrangements more than others, and that this pattern is substantially different from the pattern for other tasks. To synthesize these dissonant findings, we argue that we must understand which features of a visualization are actually used by the human visual system to solve a given task. We call these perceptual proxies. For example, when comparing the means of two bar charts, the visual system might use a "Mean length" proxy that isolates the actual lengths of the bars and then constructs a true average across these lengths. Alternatively, it might use a "Hull Area" proxy that perceives an implied hull bounded by the bars of each chart and then compares the areas of these hulls. We propose a series of potential proxies across different tasks, marks, and spatial arrangements. Simple models of these proxies can be empirically evaluated for their explanatory power by matching their performance to human performance across these marks, arrangements, and tasks. We use this process to highlight candidates for perceptual proxies that might scale more broadly to explain performance in visual comparison.


Assuntos
Gráficos por Computador , Percepção Visual/fisiologia , Crowdsourcing , Humanos , Modelos Biológicos , Análise e Desempenho de Tarefas
17.
IEEE Trans Vis Comput Graph ; 26(1): 536-546, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31484124

RESUMO

Immersive analytics turns the very space surrounding the user into a canvas for data analysis, supporting human cognitive abilities in myriad ways. We present the results of a design study, contextual inquiry, and longitudinal evaluation involving professional economists using a Virtual Reality (VR) system for multidimensional visualization to explore actual economic data. Results from our preregistered evaluation highlight the varied use of space depending on context (exploration vs. presentation), the organization of space to support work, and the impact of immersion on navigation and orientation in the 3D analysis space.

18.
IEEE Trans Vis Comput Graph ; 26(1): 386-396, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31425094

RESUMO

The Law of Common Fate from Gestalt psychology states that visual objects moving with the same velocity along parallel trajectories will be perceived by a human observer as grouped. However, the concept of common fate is much broader than mere velocity; in this paper we explore how common fate results from coordinated changes in luminance and size. We present results from a crowdsourced graphical perception study where we asked workers to make perceptual judgments on a series of trials involving four graphical objects under the influence of conflicting static and dynamic visual factors (position, size and luminance) used in conjunction. Our results yield the following rankings for visual grouping: motion > (dynamic luminance, size, luminance); dynamic size > (dynamic luminance, position); and dynamic luminance > size. We also conducted a follow-up experiment to evaluate the three dynamic visual factors in a more ecologically valid setting, using both a Gapminder-like animated scatterplot and a thematic map of election data. The results indicate that in practice the relative grouping strengths of these factors may depend on various parameters including the visualization characteristics and the underlying data. We discuss design implications for animated transitions in data visualization.

19.
Bioinformatics ; 36(7): 2195-2201, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782758

RESUMO

MOTIVATION: Integrative analysis of genomic data that includes statistical methods in combination with visual exploration has gained widespread adoption. Many existing methods involve a combination of tools and resources: user interfaces that provide visualization of large genomic datasets, and computational environments that focus on data analyses over various subsets of a given dataset. Over the last few years, we have developed Epiviz as an integrative and interactive genomic data analysis tool that incorporates visualization tightly with state-of-the-art statistical analysis framework. RESULTS: In this article, we present Epiviz Feed, a proactive and automatic visual analytics system integrated with Epiviz that alleviates the burden of manually executing data analysis required to test biologically meaningful hypotheses. Results of interest that are proactively identified by server-side computations are listed as notifications in a feed. The feed turns genomic data analysis into a collaborative work between the analyst and the computational environment, which shortens the analysis time and allows the analyst to explore results efficiently.We discuss three ways where the proposed system advances the field of genomic data analysis: (i) takes the first step of proactive data analysis by utilizing available CPU power from the server to automate the analysis process; (ii) summarizes hypothesis test results in a way that analysts can easily understand and investigate; (iii) enables filtering and grouping of analysis results for quick search. This effort provides initial work on systems that substantially expand how computational and visualization frameworks can be tightly integrated to facilitate interactive genomic data analysis. AVAILABILITY AND IMPLEMENTATION: The source code for Epiviz Feed application is available at http://github.com/epiviz/epiviz_feed_polymer. The Epiviz Computational Server is available at http://github.com/epiviz/epiviz-feed-computation. Please refer to Epiviz documentation site for details: http://epiviz.github.io/.


Assuntos
Genômica , Software , Genoma , Projetos de Pesquisa
20.
Artigo em Inglês | MEDLINE | ID: mdl-30136952

RESUMO

Data are often viewed as a single set of values, but those values frequently must be compared with another set. The existing evaluations of designs that facilitate these comparisons tend to be based on intuitive reasoning, rather than quantifiable measures. We build on this work with a series of crowdsourced experiments that use low-level perceptual comparison tasks that arise frequently in comparisons within data visualizations (e.g., which value changes the most between the two sets of data?). Participants completed these tasks across a variety of layouts: overlaid, two arrangements of juxtaposed small multiples, mirror-symmetric small multiples, and animated transitions. A staircase procedure sought the difficulty level (e.g., value change delta) that led to equivalent accuracy for each layout. Confirming prior intuition, we observe high levels of performance for overlaid versus standard small multiples. However, we also find performance improvements for both mirror symmetric small multiples and animated transitions. While some results are incongruent with common wisdom in data visualization, they align with previous work in perceptual psychology, and thus have potentially strong implications for visual comparison designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA