Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 339: 122755, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852317

RESUMO

The current investigation aimed at evaluating the impact of Azadirachta indica-mediated zinc oxide nanoparticles (Ai-ZnONPs) on the growth and biochemical characteristics of maize (sweet glutinous 3000) under exposure to 50 mg kg-1Ai-ZnONPs with Cr (VI) concentrations of 50 and 100 mg kg-1. The results indicate that plants exposed to Cr (VI) only experienced a decline in growth parameters. Conversely, the inclusion of Ai-ZnONPs caused a noteworthy increase in physiological traits. Specifically, shoot and root fresh weight increased by 28.02% and 16.51%, and 63.11% and 97.91%, respectively, when compared to Cr-50 and 100 treatments. Additionally, the SPAD chlorophyll of the shoot increased by 91.08% and 15.38% compared to Cr-50 and 100 treatments, respectively. Moreover, the antioxidant enzyme traits of plant shoot and root, such as superoxide dismutase (SOD 7.44% and 2.70%, and 4.45% and 3.53%), catalase (CAT 1.18% and 3.20%, and 5.03% and 5.78%), and peroxidase (POD 0.31% and 5.55%, and 4.72% and 3.61%), exhibited significant increases in Cr 50 and 100 treatments, respectively. The addition of Ai-ZnONPs to the soil also enhanced soil nutrient status and reduced Cr (VI) concentrations by 40.69% and 19.82% compared to Cr-50 and 100 treated soils. These findings suggest that Ai-ZnONPs can trigger the activation of biochemical pathways that enable biomass accumulation in meristematic cells. Further investigations are required to elucidate the mechanisms involved in growth promotion.


Assuntos
Azadirachta , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Zea mays/metabolismo , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Fertilizantes , Nanopartículas/toxicidade , Solo , Poluentes do Solo/análise , Cromo/análise
2.
Front Plant Sci ; 14: 1224583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636081

RESUMO

Phosphorus (P) availability in soil is paradoxical, with a significant portion of applied P accumulating in the soil, potentially affecting plant production. The impact of biochar (BR) and fishpond sediments (FPS) as fertilizers on P fixation remains unclear. This study aimed to determine the optimal ratio of BR, modified biochar (MBR), and FPS as fertilizer replacements. A pot experiment with maize evaluated the transformation of P into inorganic (Pi) and organic (Po) fractions and their contribution to P uptake. Different percentages of FPS, BR, and MBR were applied as treatments (T1-T7), T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) +MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) +BR (1%)], and T7 [FPS (35%) + MBR (1%)]. Using the modified Hedley method and the Tiessen and Moir fractionation scheme, P fractions were determined. Results showed that various rates of MBR, BR, and FPS significantly increased labile and moderately labile P fractions (NaHCO3-Pi, NaHCO3-Po, HClD-Pi, and HClC-Pi) and residual P fractions compared with the control (T1). Positive correlations were observed between P uptake, phosphatase enzyme activity, and NaHCO3-Pi. Maximum P uptake and phosphatase activity were observed in T6 and T7 treatments. The addition of BR, MBR, and FPS increased Po fractions. Unlike the decline in NaOH-Po fraction, NaHCO3-Po and HClc-Po fractions increased. All Pi fractions, particularly apatite (HClD-Pi), increased across the T1-T7 treatments. HClD-Pi was the largest contributor to total P (40.7%) and can convert into accessible P over time. The T5 treatment showed a 0.88% rise in residual P. HClD-Pi and residual P fractions positively correlated with P uptake, phosphatase activity, NaOH-Pi, and NaOH-Po moderately available fractions. Regression analysis revealed that higher concentrations of metals such as Ca, Zn, and Cr significantly decreased labile organic and inorganic P fractions (NaHCO3-Pi, R 2 = 0.13, 0.36, 0.09) and their availability (NaHCO3-Po, R 2 = 0.01, 0.03, 0.25). Excessive solo BR amendments did not consistently increase P availability, but optimal simple and MBR increased residual P contents in moderately labile and labile forms (including NaOH-Pi, NaHCO3-Pi, and HClD-Pi). Overall, our findings suggest that the co-addition of BR and FPS can enhance soil P availability via increasing the activity of phosphatase enzyme, thereby enhancing plant P uptake and use efficiency, which eventually maintains the provision of ecosystem functions and services.

3.
Saudi J Biol Sci ; 29(5): 3482-3493, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844392

RESUMO

Multispecies cropping systems contribute to sustainable agriculture with multiple ecosystem services. Effects of intercropping of various crops with faba beans on growth and yield parameters and disease severity of root rot, damping off and broomrape were investigated. This study was implemented in the laboratory, greenhouse and field to investigate the effect of the intercropping systems (fenugreek + faba bean, lupine + faba bean, garlic + faba bean and sole faba bean). The intercropping systems were combined with the application of arbuscular mycorrhiza fungi (AMF) and yeast as bio-control agents, compared to chemical application of herbicides (Glyphosate) and fungicides (Rizolex-T50), to control rot root diseases and broomrape weeds, Orobanche spp., of faba bean plants in vivo and under the naturally infested field. In vitro, yeast and Rizolex-T50 significantly inhibited mycelial growth of root pathogenic fungi. Intercropping with garlic and/or application of Rizolex-T, significantly decreased the incidence and disease index of root rot and damping-off diseases, meanwhile increased percentage of survival plants. In vivo, intercropping with fenugreek and/or application of Glyphosate, significantly reduced the number/weight of spikes/plot of broomrapes. Intercropping with fenugreek combined with AMF application promoted crop growth and significantly increased yield components. The AMF enhanced seed yield/ha when applied to the intercropping of faba bean + fenugreek and faba bean + garlic, showing the highest seed yield/ha with 3.722 and 3.568 ton/ha, respectively. Intercropping of faba bean with garlic integrated with AMF revealed the highest values of LER, 2.45, and net return, 2341 US$/ha. Our results suggested that using faba bean-garlic intercrop along with AMF inoculation can reduce root rot disease, damping off and broomrapes, as well as enhance the profitability of Egyptian farmer and sustainable production.

4.
Saudi J Biol Sci ; 29(5): 3617-3625, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844398

RESUMO

Potato cyst nematodes caused by Globodera rostochiensis, are quarantine-restricted pests causing significant yield losses to potato growers. The phytohormone ethylene play significant roles in various plant-pathogen interactions, however, the molecular knowledge of how ethylene influences potato-nematode interaction is still lacking. Precise detection of potato-induced genes is essential for recognizing plant-induced systemic resistance (ISR). Candidate genes or PR- proteins with putative functions in modulating the response to potato cyst nematode stress were selected and functionally characterized. Using real-time polymerase chain reaction (RT-PCR), we measured the quantified expression of four pathogenesis-related (PR) genes, PR2, PR3, peroxidase, and polyphenol oxidase. The activation of these genes is intermediate during the ISR signaling in the root tissues. Using different ethylene concentrations could detect and induce defense genes in infected potato roots compared to the control treatment. The observed differences in the gene expression of treated infected plants are because of different concentrations of ethylene treatment and pathogenicity. Besides, the overexpressed or suppressed of defense- related genes during developmental stages and pathogen infection. We concluded that ethylene treatments positively affected potato defensive genes expression levels against cyst nematode infection. The results emphasize the necessity of studying molecular signaling pathways controlling biotic stress responses. Understanding such mechanisms will be critical for the development of broad-spectrum and stress-tolerant crops in the future.

5.
Saudi J Biol Sci ; 29(3): 1747-1759, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280531

RESUMO

Maize (Zea mays L.) is one of the important cereal crops along with wheat and rice worldwide. The purpose of this study was to use classical genetic approaches to assess the resistance of various maize parents and hybrids to the northern corn leaf blight (NCLB) disease in two different locations in Egypt. Eight parents, 28 F1, and 2 check hybrids were evaluated. The analysis of variance showed high significant variations between maize parents and their hybrids for the studied parameters and NCLB disease, besides there are significant variations between both locations. Results of maize parents showed that Sids 63, Giza 602, and Giza 628 cultivars exhibited the highest values and were resistant to NCLB in both locations comparing with Nubaria 39 and Gemmiza 18 that were susceptible to NCLB disease. Concerning the maize hybrids, analysis of variance and mean squares of growth characters in both locations indicated high significant variations between the maize hybrids including the check hybrids. When combined between the two locations for current parameters against NCLB, the data pointed that the Sakha location values for maize hybrids were much closed to the combining data in parents and the hybrids detected high resistance to this disease comparing with Nubaria location. All tested maize lines (38 lines), including parents and hybrids were classified as follows, two lines were rated as 1 (highly resistant), three were rated as 2 (resistant), sixteen were rated as 3 (moderate resistant), eight were rated 4 (moderately susceptible) and nine were rated 5 (susceptible). The data explaining that the crossing between high resistant maize cultivars produced high levels of resistance to NCLB disease. Therefore, our results verified that classical breeding could efficiently increase the resistance levels of maize germplasm against NCLB disease by developing new cultivars with superior performance in terms of grain yield, disease resistance and grain quality.

6.
Front Plant Sci ; 13: 966377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714787

RESUMO

Sugar beet productivity is highly constrained by the root-knot nematode (RKN) Meloidogyne incognita. Eight sugar beet genotypes were screened under greenhouse conditions for their susceptibility to M. incognita according to an adapted quantitative scheme for assignment Canto-Saenz's host suitability (resistance) designations (AQSCS). Besides, the degree of susceptibility or tolerance of the examined genotypes was recorded by the modified host-parasite index (MHPI) scale based on yield performance. In addition, single nucleotide polymorphism (SNP) was also determined. Sugar beet genotypes have been classified into four categories for their susceptibility or tolerance according to the AQSCS scale. The first category, the moderately resistant (MR) group implies only one variety named SVH 2015, which did not support nematode reproduction (RF≤1), and had less root damage (GI≈2). Second, the tolerant group (T) involving Lilly and Halawa KWS supported fairly high nematode reproduction (RF>1) with relatively plant damage (GI≤2). Whereas the susceptible (S) category involved four varieties, FARIDA, Lammia KWS, Polat, and Capella, which supported nematode reproduction factor (RF>1) with high plant damage (GI>2). The fourth category refers to the highly susceptible (HYS) varieties such as Natura KWS that showed (RF≤1) and very high plant damage (GI>2). However, the MHPI scale showed that Lammia KWS variety was shifted from the (S) category to the (T) category. Results revealed significant differences among genotypes regarding disease severity, yield production, and quality traits. The SVH 2015 variety exhibited the lowest disease index values concerning population density with 800/250 cm3 soils, RF=2, root damage/gall index (GI=1.8), gall size (GS=2.3), gall area (GA=3.7), damage index (DI=3.4), susceptibility rate (SR=2.4), and MHP index (MHPI=2.5). However, Lammia KWS showed the highest disease index values regarding population density with 8890/250 cm3 soils, RF= 22.2, GI= 4.8, and SR= 14.1. Meanwhile, Natura KWS the highest GS, GA and MHPI with 7.1, 8 and 20.9, respectively. The lowest DI was achieved by Capella (DI= 6) followed by Lammia KWS (DI= 5.9). For yield production, and quality traits, SVH 2015 exhibited the lowest reductions of sugar yields/beet's root with 11.1%. While Natura KWS had the highest reduction with 79.3%, as well as it showed the highest reduction in quality traits; including sucrose, T.S.S, and purity with 65, 27.3, and 51.9%, respectively. The amino acid alignment and prediction of the DNA sequences revealed the presence of five SNPs among all sugar beet verities.

7.
Saudi J Biol Sci ; 28(12): 7314-7326, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867034

RESUMO

Nematodes are hidden enemies that inhibit the entire ecosystem causing adverse effects on animals and plants, leading to economic losses. Management of foliar phytoparasitic nematodes is an excruciating task. Various approaches were used to control nematodes dispersal, i.e., traditional practices, resistant cultivars, plant extract, compost, biofumigants, induced resistance, nano-biotechnology applications, and chemical control. This study reviews the various strategies adopted in combating plant-parasitic nematodes while examining the benefits and challenges. The significant awareness of biological and environmental factors determines the effectiveness of nematode control, where the incorporation of alternative methods to reduce the nematodes population in plants with increasing crop yield. The researchers were interested in explaining the fundamental molecular mechanisms, providing an opportunity to deepen our understanding of the sustainable management of nematodes in croplands. Eco-friendly pesticides are effective as a sustainable nematodes management tool and safe for humans. The current review presents the eco-friendly methods in controlling nematodes to minimize yield losses, and benefit the agricultural production efficiency and the environment.

8.
Saudi J Biol Sci ; 28(12): 7349-7359, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867037

RESUMO

Nanotechnology has received much attention because of its distinctive properties and many applications in various fields. Nanotechnology is a new approach to increase agricultural production with premium quality, environmental safety, biological support, and financial stability. Ecofriendly technology is becoming progressively important in modern agricultural applications as alternatives to traditional fertilizers and pesticides. Nanotechnology offers an alternative solution to overcome the disadvantages of conventional agriculture. Therefore, recent developments in using nanoparticles (NPs) in agriculture should be studied. This review presented a novel overview about the biosynthesis of NPs, using NPs as nano-fertilizers and nano-pesticides, the applications of NPs in agriculture, and their role in enhancing the function of biofactors. We also, show recent studies on NPs-plant interactions, the fate and safety of nanomaterials in plants, and NPs' function in alleviating the adverse effects of abiotic stress and heavy metal toxicity. Nano-fertilizers are essential to reduce the use of inorganic fertilizers and reduce their antagonistic effects on the environment. Nano-fertilizers are more reactive, can penetrate the epidermis allowing for gradual release, and targeted distribution, and thus reducing nutrients surplus, enhancing nutrient use efficiency. We also, concluded that NPs are crucial in alleviating abiotic stress and heavy metal toxicity. However, some studies reported the toxic effects of NPs on higher plants by induction of oxidative stress signals via depositing NPs on the cell surface and in organelles. The knowledge in our review article is critical in defining limitations and future perspectives of using nano-fertilizers as an alternative to conventional fertilizers.

9.
Front Plant Sci ; 11: 919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636869

RESUMO

Late blight is considered the most renowned devastating potato disease worldwide. Resistance gene (R)-based resistance to late blight is the most effective method to inhibit infection by the causal agent Phytophthora infestans. However, the limited availability of resistant potato varieties and the rapid loss of R resistance, caused by P. infestans virulence variability, make disease control rely on fungicide application. We employed an Agrobacterium tumefaciens-mediated transient gene expression assay and effector biology approach to understand late blight resistance of Chinese varieties that showed years of promising field performance. We are particularly interested in PiAvr3aEM , the most common virulent allele of PiAvr3aKI that triggers a R3a-mediated hypersensitive response (HR) and late blight resistance. Through our significantly improved A. tumefaciens-mediated transient gene expression assay in potato using cultured seedlings, we characterized two dominant potato varieties, Qingshu9 and Longshu7, in China by transient expression of P. infestans effector genes. Transient expression of 10 known avirulence genes showed that PiAvr4 and PiAvr8 (PiAvrsmira2) could induce HR in Qingshu9, and PiAvrvnt1.1 in Longshu7, respectively. Our study also indicated that PiAvr3aEM is recognized by these two potato varieties, and is likely involved in their significant field performance of late blight resistance. The identification of natural resistance mediated by PiAvr3aEM recognition in Qingshu9 and Longshu7 will facilitate breeding for improved potato resistance against P. infestans.

10.
Ecotoxicol Environ Saf ; 202: 110875, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580081

RESUMO

Nitrification inhibitors (NIs) are used to retard the nitrification process and reduce nitrogen (N) losses. However, the effects of soil properties on NI efficacy are less clear. Moreover, the direct and indirect effects of soil property variations on NI efficiency in minimizing carbon dioxide (CO2) emissions have not been previously studied. An incubation experiment was conducted for 40 days with two treatments, N (200 mg N-urea kg-1) and N + dicyandiamide (DCD) (20 mg DCD kg-1), and a control group (without the N) to investigate the response of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to DCD application and the consequences for CO2, nitrous oxide (N2O) and ammonia (NH3) emissions from six soils from the Loess Plateau with different properties. The nitrification process completed within 6-18 days for the N treatment and within 30->40 days for the N + DCD treatment. AOB increased significantly with N fertilizer application, while this effect was inhibited in soils when DCD was applied. AOA was not sensitive to N fertilizer and DCD application. The nitrification rate was positively correlated with the clay (p < 0.05) and SOM contents (p < 0.01); DCD was more effective in loam soil with low SOM and high soil pH. Soil pH significantly was decreased with N fertilizer application, while it increased when DCD was applied. Moreover, DCD application decreased CO2 emissions from soils by 22%-172%; CO2 emissions were negatively correlated with the clay and SOM contents. DCD application decreased N2O emissions in each soil by 1.0- to 94-fold compared with those after N fertilizer application. In contrast, DCD application increased NH3 release from soils by 59-278%. NH3 volatilization was negatively correlated with clay (p < 0.05) and SOM (p < 0.01) contents and positively correlated with soil pH (p < 0.01). Therefore, soil texture, SOM and soil pH have significant effects on the DCD performance, nitrification process and gaseous emissions.


Assuntos
Dióxido de Carbono/análise , Guanidinas/análise , Nitrificação/efeitos dos fármacos , Amônia/análise , Archaea/efeitos dos fármacos , Betaproteobacteria , Fertilizantes/análise , Nitrogênio/farmacologia , Óxido Nitroso , Solo/química , Microbiologia do Solo , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA