Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunity ; 55(12): 2369-2385.e10, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36370712

RESUMO

Type I and II interferons (IFNs) stimulate pro-inflammatory programs that are critical for immune activation, but also induce immune-suppressive feedback circuits that impede control of cancer growth. Here, we sought to determine how these opposing programs are differentially induced. We demonstrated that the transcription factor interferon regulatory factor 2 (IRF2) was expressed by many immune cells in the tumor in response to sustained IFN signaling. CD8+ T cell-specific deletion of IRF2 prevented acquisition of the T cell exhaustion program within the tumor and instead enabled sustained effector functions that promoted long-term tumor control and increased responsiveness to immune checkpoint and adoptive cell therapies. The long-term tumor control by IRF2-deficient CD8+ T cells required continuous integration of both IFN-I and IFN-II signals. Thus, IRF2 is a foundational feedback molecule that redirects IFN signals to suppress T cell responses and represents a potential target to enhance cancer control.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Fator Regulador 2 de Interferon/genética , Linfócitos T CD8-Positivos , Fatores de Transcrição , Exaustão das Células T , Neoplasias/patologia
2.
Nat Immunol ; 23(8): 1273-1283, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835962

RESUMO

Type I interferons (IFN-Is) are central regulators of anti-tumor immunity and responses to immunotherapy, but they also drive the feedback inhibition underlying therapeutic resistance. In the present study, we developed a mass cytometry approach to quantify IFN-I-stimulated protein expression across immune cells and used multi-omics to uncover pre-therapy cellular states encoding responsiveness to inflammation. Analyzing peripheral blood cells from multiple cancer types revealed that differential responsiveness to IFN-Is before anti-programmed cell death protein 1 (PD1) treatment was highly predictive of long-term survival after therapy. Unexpectedly, IFN-I hyporesponsiveness efficiently predicted long-term survival, whereas high responsiveness to IFN-I was strongly associated with treatment failure and diminished survival time. Peripheral IFN-I responsive states were not associated with tumor inflammation, identifying a disconnect between systemic immune potential and 'cold' or 'hot' tumor states. Mechanistically, IFN-I responsiveness was epigenetically imprinted before therapy, poising cells for differential inflammatory responses and dysfunctional T cell effector programs. Thus, we identify physiological cell states with clinical importance that can predict success and long-term survival of PD1-blocking immunotherapy.


Assuntos
Interferon Tipo I , Humanos , Imunoterapia , Inflamação , Linfócitos T
3.
Nat Immunol ; 22(12): 1524-1537, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795443

RESUMO

Inhibiting PD-1:PD-L1 signaling has transformed therapeutic immune restoration. CD4+ T cells sustain immunity in chronic infections and cancer, yet little is known about how PD-1 signaling modulates CD4+ helper T (TH) cell responses or the ability to restore CD4+ TH-mediated immunity by checkpoint blockade. We demonstrate that PD-1:PD-L1 specifically suppressed CD4+ TH1 cell amplification, prevents CD4+ TH1 cytokine production and abolishes CD4+ cytotoxic killing capacity during chronic infection in mice. Inhibiting PD-L1 rapidly restored these functions, while simultaneously amplifying and activating TH1-like T regulatory cells, demonstrating a system-wide CD4-TH1 recalibration. This effect coincided with decreased T cell antigen receptor signaling, and re-directed type I interferon (IFN) signaling networks towards dominant IFN-γ-mediated responses. Mechanistically, PD-L1 blockade specifically targeted defined populations with pre-established, but actively suppressed proliferative potential, with limited impact on minimally cycling TCF-1+ follicular helper T cells, despite high PD-1 expression. Thus, CD4+ T cells require unique differentiation and functional states to be targets of PD-L1-directed suppression and therapeutic restoration.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Coriomeningite Linfocítica/tratamento farmacológico , Vírus da Coriomeningite Linfocítica/imunologia , Células Th1/efeitos dos fármacos , Transferência Adotiva , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos Endogâmicos C57BL , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/virologia , Transcriptoma
4.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32880629

RESUMO

Many pathogens subvert intestinal immunity to persist within the gastrointestinal tract (GIT); yet, the underlying mechanisms that enable sanctuary specifically in this reservoir are unclear. Using mass cytometry and network analysis, we demonstrate that chronic LCMV infection of the GIT leads to dysregulated microbial composition, a cascade of metabolic alterations, increased susceptibility to GI disease, and a system-wide recalibration of immune composition that defines viral persistence. Chronic infection led to outgrowth of activated Tbet-expressing T reg cell populations unique to the GIT and the rapid erosion of pathogen-specific CD8 tissue-resident memory T cells. Mechanistically, T reg cells and coinhibitory receptors maintained long-term viral sanctuary within the GIT, and their targeting reactivated T cells and eliminated this viral reservoir. Thus, our data provide a high-dimensional definition of the mechanisms of immune regulation that chronic viruses implement to exploit the unique microenvironment of the GIT and identify T reg cells as key modulators of viral persistence in the intestinal tract.


Assuntos
Trato Gastrointestinal/imunologia , Trato Gastrointestinal/virologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Efeito Espectador , Linfócitos T CD8-Positivos/imunologia , Doença Crônica , Colite/complicações , Colite/virologia , Disbiose/complicações , Disbiose/virologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Regulação da Expressão Gênica , Ativação Linfocitária/imunologia , Depleção Linfocítica , Coriomeningite Linfocítica/genética , Camundongos Endogâmicos C57BL , Fenótipo , Linfócitos T Reguladores/imunologia , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 117(10): 5420-5429, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094187

RESUMO

Chronic infection provokes alterations in inflammatory and suppressive pathways that potentially affect the function and integrity of multiple tissues, impacting both ongoing immune control and restorative immune therapies. Here we demonstrate that chronic lymphocytic choriomeningitis virus infection rapidly triggers severe thymic depletion, mediated by CD8 T cell-intrinsic type I interferon (IFN) and signal transducer and activator of transcription 2 (Stat2) signaling. Occurring temporal to T cell exhaustion, thymic cellularity reconstituted despite ongoing viral replication, with a rapid secondary thymic depletion following immune restoration by anti-programmed death-ligand 1 (PDL1) blockade. Therapeutic hematopoietic stem cell transplant (HSCT) during chronic infection generated new antiviral CD8 T cells, despite sustained virus replication in the thymus, indicating an impairment in negative selection. Consequently, low amounts of high-affinity self-reactive T cells also escaped the thymus following HSCT during chronic infection. Thus, by altering the stringency and partially impairing negative selection, the host generates new virus-specific T cells to replenish the fight against the chronic infection, but also has the potentially dangerous effect of enabling the escape of self-reactive T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Interferon Tipo I/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica , Timo/patologia , Timo/virologia , Animais , Atrofia/virologia , Antígeno B7-H1/antagonistas & inibidores , Doença Crônica , Transplante de Células-Tronco Hematopoéticas , Interferon Tipo I/genética , Coriomeningite Linfocítica/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Replicação Viral
6.
Front Oncol ; 9: 415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165047

RESUMO

Flow cytometry is a widely applied approach for exploratory immune profiling and biomarker discovery in cancer and other diseases. However, flow cytometry is limited by the number of parameters that can be simultaneously analyzed, severely restricting its utility. Recently, the advent of mass cytometry (CyTOF) has enabled high dimensional and unbiased examination of the immune system, allowing simultaneous interrogation of a large number of parameters. This is important for deep interrogation of immune responses and particularly when sample sizes are limited (such as in tumors). Our goal was to compare the accuracy and reproducibility of CyTOF against flow cytometry as a reliable analytic tool for human PBMC and tumor tissues for cancer clinical trials. We developed a 40+ parameter CyTOF panel and demonstrate that compared to flow cytometry, CyTOF yields analogous quantification of cell lineages in conjunction with markers of cell differentiation, function, activation, and exhaustion for use with fresh and viably frozen PBMC or tumor tissues. Further, we provide a protocol that enables reliable quantification by CyTOF down to low numbers of input human cells, an approach that is particularly important when cell numbers are limiting. Thus, we validate CyTOF as an accurate approach to perform high dimensional analysis in human tumor tissue and to utilize low cell numbers for subsequent immunologic studies and cancer clinical trials.

7.
Immunity ; 49(4): 678-694.e5, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314757

RESUMO

CD8+ T cell exhaustion impedes control of chronic viral infection; yet how new T cell responses are mounted during chronic infection is unclear. Unlike T cells primed at the onset of infection that rapidly differentiate into effectors and exhaust, we demonstrate that virus-specific CD8+ T cells primed after establishment of chronic LCMV infection preferentially generate memory-like transcription factor TCF1+ cells that were transcriptionally and proteomically distinct, less exhausted, and more responsive to immunotherapy. Mechanistically, adaptations of antigen-presenting cells and diminished T cell signaling intensity promoted differentiation of the memory-like subset at the expense of rapid effector cell differentiation, which was now highly dependent on IL-21-mediated CD4+ T cell help for its functional generation. Chronic viral infection similarly redirected de novo differentiation of tumor-specific CD8+ T cells, ultimately preventing cancer control. Thus, targeting these T cell stimulatory pathways could enable strategies to control chronic infection, tumors, and enhance immunotherapeutic efficacy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Imunidade/imunologia , Memória Imunológica/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/virologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/genética , Doença Crônica , Perfilação da Expressão Gênica/métodos , Imunidade/genética , Memória Imunológica/genética , Imunoterapia , Coriomeningite Linfocítica/terapia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Proteômica/métodos , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/imunologia , Fator 1 de Transcrição de Linfócitos T/metabolismo
8.
AIDS Res Hum Retroviruses ; 33(S1): S59-S69, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29140111

RESUMO

Cytotoxic T cells are critical in controlling virus infections. However, continuous antigen stimulation and negative regulatory factors cause CD8 T cells to enter a dysfunctional state (T cell exhaustion), resulting in viral persistence. We hypothesized that the exhausted T cell state could be molecularly rejuvenated using a somatic cell reprogramming technology, which is technically able to convert any types of cells to induced pluripotent stem cells (iPSCs), to regenerate functional T cells capable of purging chronic infection. We generated a new mouse line (B6/129OKSM) in which every somatic cell contains four doxycycline-inducible reprogramming genes (Oct4, Klf4, Sox2, and c-Myc: OKSM), and infected them with lymphocytic choriomeningitis virus (LCMV) clone 13 to establish chronic infection. Exhausted LCMV-specific T cells isolated by flow sorting were successfully reprogrammed ex vivo into iPSCs in the presence of doxycycline. Upon injection into blastocysts and subsequent transfer into foster females, the reprogrammed cells differentiated into functional naive T cells that maintained their original antigen specificity. These results provide proof of concept that somatic cell reprogramming of exhausted T cells into iPSCs can erase imprints of their previous exhausted state and in turn regenerate functional virus-specific T cells.


Assuntos
Diferenciação Celular/imunologia , Reprogramação Celular/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Fator 4 Semelhante a Kruppel , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Transgênicos , Estudo de Prova de Conceito
9.
Immunity ; 47(5): 974-989.e8, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166591

RESUMO

Innate and adaptive immune cells modulate heart failure pathogenesis during viral myocarditis, yet their identities and functions remain poorly defined. We utilized a combination of genetic fate mapping, parabiotic, transcriptional, and functional analyses and demonstrated that the heart contained two major conventional dendritic cell (cDC) subsets, CD103+ and CD11b+, which differentially relied on local proliferation and precursor recruitment to maintain their tissue residency. Following viral infection of the myocardium, cDCs accumulated in the heart coincident with monocyte infiltration and loss of resident reparative embryonic-derived cardiac macrophages. cDC depletion abrogated antigen-specific CD8+ T cell proliferative expansion, transforming subclinical cardiac injury to overt heart failure. These effects were mediated by CD103+ cDCs, which are dependent on the transcription factor BATF3 for their development. Collectively, our findings identified resident cardiac cDC subsets, defined their origins, and revealed an essential role for CD103+ cDCs in antigen-specific T cell responses during subclinical viral myocarditis.


Assuntos
Antígenos CD/análise , Infecções por Cardiovirus/complicações , Células Dendríticas/imunologia , Vírus da Encefalomiocardite , Insuficiência Cardíaca/prevenção & controle , Cadeias alfa de Integrinas/análise , Miocardite/complicações , Animais , Antígeno CD11b/análise , Linfócitos T CD8-Positivos/imunologia , Infecções por Cardiovirus/imunologia , Movimento Celular , Feminino , Hematopoese , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Receptores CCR2/fisiologia
10.
Cell Rep ; 16(12): 3286-3296, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653690

RESUMO

Viral persistence specifically inhibits CD4 Th1 responses and promotes Tfh immunity, but the mechanisms that suppress Th1 cells and the disease consequences of their loss are unclear. Here, we demonstrate that the loss of CD4 Th1 cells specifically leads to progressive CD8 T cell decline and dysfunction during viral persistence. Therapeutically reconstituting CD4 Th1 cells restored CD4 T cell polyfunctionality, enhanced antiviral CD8 T cell numbers and function, and enabled viral control. Mechanistically, combined interaction of PD-L1 and IL-10 by suppressive dendritic cell subsets inhibited new CD4 Th1 cells in both acute and persistent virus infection, demonstrating an unrecognized suppressive function for PD-L1 in virus infection. Thus, the loss of CD4 Th1 cells is a key event leading to progressive CD8 T cell demise during viral persistence with important implications for restoring antiviral CD8 T cell immunity to control persistent viral infection.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Interleucina-10/imunologia , Coriomeningite Linfocítica/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Proc Natl Acad Sci U S A ; 111(20): 7409-14, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799699

RESUMO

CD4 T cells are central to orchestrate, sustain, and potentially regenerate antiviral immunity throughout persistent viral infections. Although the evolving immune environment during persistent infection reshapes established CD4 T-cell responses, the fate of naïve CD4 T cells primed in the midst of persistent infection is unclear. We demonstrate that, in marked contrast to the onset of infection, virus-specific CD4 T cells primed during an established persistent infection have diminished ability to develop Th1 responses, to efficiently accumulate in peripheral tissues, and almost exclusively differentiate into T follicular helper cells. Consistent with suppressed Th1 and heightened Tfh differentiation, virus-specific CD4 T cells primed during the established persistent infection provide help to B cells, but only limited help to CD8 T cells. The suppression of de novo Th1 generation and tissue distribution was mediated by chronic type I IFN (IFN-I) production and was effectively restored by blocking IFN-I signaling during CD4 T-cell priming. Thus, we establish a suppressive function of chronic IFN-I signaling and mechanism of immunoregulation during an established persistent virus infection.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD4-Positivos/virologia , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Células Th1/virologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Terapia de Imunossupressão , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Interferon/metabolismo , Transdução de Sinais , Células Th1/imunologia , Distribuição Tecidual
12.
Proc Natl Acad Sci U S A ; 110(50): E4904-12, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24191014

RESUMO

Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Endossomos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Semicarbazonas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Aminas , Animais , Transporte Biológico/fisiologia , Caspase 1/metabolismo , Cromatografia Líquida , Endossomos/fisiologia , Citometria de Fluxo , Células HeLa , Humanos , Macrófagos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Estrutura Molecular , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Semicarbazonas/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA