Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14173, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898067

RESUMO

Deploying distributed generators (DGs) supplied by renewable energy resources poses a significant challenge for efficient power grid operation. The proper sizing and placement of DGs, specifically photovoltaics (PVs) and wind turbines (WTs), remain crucial due to the uncertain characteristics of renewable energy. To overcome these challenges, this study explores an enhanced version of a meta-heuristic technique called the prairie dog optimizer (PDO). The modified prairie dogs optimizer (mPDO) incorporates a novel exploration phase inspired by the slime mold algorithm (SMA) food approach. The mPDO algorithm is proposed to analyze the substantial effects of different dynamic load characteristics on the performance of the distribution networks and the designing of the PV-based and WT-based DGs. The optimization problem incorporates various operational constraints to mitigate energy loss in the distribution networks. Further, the study addresses uncertainties related to the random characteristics of PV and WT power outputs by employing appropriate probability distributions. The mPDO algorithm is evaluated using cec2020 benchmark suit test functions and rigorous statistical analysis to mathematically measure its success rate and efficacy while considering different type of optimization problems. The developed mPDO algorithm is applied to incorporate both PV and WT units, individually and simultaneously, into the IEEE 69-bus distribution network. This is achieved considering residential, commercial, industrial, and mixed time-varying voltage-dependent load demands. The efficacy of the modified algorithm is demonstrated using the standard benchmark functions, and a comparative analysis is conducted with the original PDO and other well-known algorithms, utilizing various statistical metrics. The numerical findings emphasize the significant influence of load type and time-varying generation in DG planning. Moreover, the mPDO algorithm beats the alternatives and improves distributed generators' technical advantages across all examined scenarios.

2.
Sci Rep ; 14(1): 3051, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321089

RESUMO

This paper presents a novel approach to solve the optimal power flow (OPF) problem by utilizing a modified white shark optimization (MWSO) algorithm. The MWSO algorithm incorporates the Gaussian barebones (GB) and quasi-oppositional-based learning (QOBL) strategies to improve the convergence rate and accuracy of the original WSO algorithm. To address the uncertainty associated with renewable energy sources, the IEEE 30 bus system, which consists of 30 buses, 6 thermal generators, and 41 branches, is modified by replacing three thermal generators with two wind generators and one solar PV generator. And the IEEE 57-bus system, which consists of 57 buses, 7 thermal generators, and 80 branches, is also modified by the same concept. The variability of wind and solar generation is described using the Weibull and lognormal distributions, and its impact on the OPF problem is considered by incorporating reserve and penalty costs for overestimation and underestimation of power output. The paper also takes into account the unpredictability of power consumption (load demand) by analyzing its influence using standard probability density functions (PDF). Furthermore, practical conditions related to the thermal generators, such as ramp rate limits are examined. The MWSO algorithm is evaluated and analyzed using 23 standard benchmark functions, and a comparative study is conducted against six well-known techniques using various statistical parameters. The results and statistical analysis demonstrate the superiority and effectiveness of the MWSO algorithm compared to the original WSO algorithm for addressing the OPF problem in the presence of generation and demand uncertainties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA