Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 171: 116217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286037

RESUMO

Phosphoinositide 3-kinase (PI3K)-α represents a key intracellular signal transducer involved in the regulation of key cell functions such as cell survival and proliferation. Excessive activation of PI3Kα is considered one of the major determinants of cancer therapy resistance. Despite preclinical and clinical evaluation of PI3Kα inhibitors in various tumor entities, including head and neck squamous cell carcinoma (HNSCC), it remains elusive how conventional radiochemotherapy can be enhanced by concurrent PI3K inhibitors and how PI3K deactivation mechanistically exerts its effects. Here, we investigated the radiochemosensitizing potential and adaptation mechanisms of four PI3K inhibitors, Alpelisib, Copanlisib, AZD8186, and Idelalisib in eight HNSCC models grown under physiological, three-dimensional matrix conditions. We demonstrate that Alpelisib, Copanlisib and AZD8186 but not Idelalisib enhance radio- and radiochemosensitivity in the majority of HNSCC cell models (= responders) in a manner independent of PIK3CA mutation status. However, Alpelisib promotes MAPK signaling in non-responders compared to responders without profound impact on Akt, NFκB, TGFß, JAK/STAT signaling and DNA repair. Bioinformatic analyses identified unique gene mutations associated with extracellular matrix to be more frequent in non-responder cell models than in responders. Finally, we demonstrate that targeting of the cell adhesion molecule ß1 integrin on top of Alpelisib sensitizes non-responders to radiochemotherapy. Taken together, our study demonstrates the sensitizing potential of Alpelisib and other PI3K inhibitors in HNSCC models and uncovers a novel ß1 integrin-dependent mechanism that may prove useful in overcoming resistance to PI3K inhibitors.


Assuntos
Compostos de Anilina , Cromonas , Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Tiazóis , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases/metabolismo , Integrina beta1/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Classe I de Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral
2.
Am J Cancer Res ; 13(10): 4597-4612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970361

RESUMO

Glioblastomas (GBM) are the most common primary brain tumors in adults and associated with poor clinical outcomes due to therapy resistances and destructive growth. Interactions of cancer cells with the extracellular matrix (ECM) play a pivotal role in therapy resistances and tumor progression. In this study, we investigate the functional dependencies between the discoidin domain receptor 1 (DDR1) and the integrin family of cell adhesion molecules for the radioresponse of human glioblastoma cells. By means of an RNA interference screen on DDR1 and all known integrin subunits, we identified co-targeting of DDR1/integrin ß3 to most efficiently reduce clonogenicity, enhance cellular radiosensitivity and diminish repair of DNA double strand breaks (DSB). Simultaneous pharmacological inhibition of DDR1 with DDR1-IN-1 and of integrins αVß3/αVß5 with cilengitide resulted in confirmatory data in a panel of 2D grown glioblastoma cultures and 3D gliospheres. Mechanistically, we found that key DNA repair proteins ATM and DNA-PK are altered upon DDR1/integrin αVß3/integrin αVß5 inhibition, suggesting a link to DNA repair mechanisms. In sum, the radioresistance of human glioblastoma cells can effectively be declined by co-deactivation of DDR1, integrin αVß3 and integrin αVß5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA