Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671451

RESUMO

Hypertension may develop before or after the onset of diabetes and it is known to increase the risk of developing diabetic nephropathy. Alpha-1 antitrypsin (AAT) is a multi-functional protein with beneficial effects in various diseases but its role in reducing blood pressure in the diabetic kidney has not been thoroughly studied. Like blood pressure, epithelial sodium channels (ENaC) and its adaptor protein myristoylated alanine-rich C-kinase substrate (MARCKS) are regulated by circadian rhythms. Our hypothesis is that administration of human AAT (hAAT) reduces blood pressure in hypertensive diabetic mice by attenuating membrane expression of ENaC and its association with the actin cytoskeleton. First, we show hAAT administration results in reduced blood pressure in diabetic db/db mice compared to vehicle treatment in both the inactive and active cycles. Western blotting and immunohistochemistry analyses showed a reduction of ENaC and the actin cytoskeleton protein, MARCKS in the kidneys of diabetic db/db mice treated with hAAT compared to vehicle. hAAT treatment resulted in elevated amounts of extracellular vesicles present in the urine of diabetic db/db mice compared to vehicle treatment both in the inactive and active cycles. Multiple hexosylceramides, among other lipid classes increased in urinary EVs released from hAAT treated hypertensive diabetic mice compared to vehicle treated mice. Taken together, these data suggest hAAT treatment could normalize blood pressure in the diabetic kidney in a mechanism involving attenuation of renal ENaC and MARCKS protein expression and possibly ceramide metabolism to hexosylceramide in kidney cells.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hipertensão , Animais , Humanos , Camundongos , Pressão Sanguínea , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Hipertensão/tratamento farmacológico , Camundongos Endogâmicos , Substrato Quinase C Rico em Alanina Miristoilada , Canais Epiteliais de Sódio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo
2.
Front Physiol ; 12: 710313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630137

RESUMO

Human alpha-1 antitrypsin (hAAT) is a versatile protease inhibitor, but little is known about its targets in the aldosterone-sensitive distal nephron and its role in electrolyte balance and blood pressure control. We analyzed urinary electrolytes, osmolality, and blood pressure from hAAT transgenic (hAAT-Tg) mice and C57B/6 wild-type control mice maintained on either a normal salt or high salt diet. Urinary sodium, potassium, and chloride concentrations as well as urinary osmolality were lower in hAAT-Tg mice maintained on a high salt diet during both the active and inactive cycles. hAAT-Tg mice showed a lower systolic blood pressure compared to C57B6 mice when maintained on a normal salt diet but this was not observed when they were maintained on a high salt diet. Cathepsin B protein activity was less in hAAT-Tg mice compared to wild-type controls. Protein expression of the alpha subunit of the sodium epithelial channel (ENaC) alpha was also reduced in the hAAT-Tg mice. Natriuretic peptide receptor C (NPRC) protein expression in membrane fractions of the kidney cortex was reduced while circulating levels of atrial natriuretic peptide (ANP) were greater in hAAT-Tg mice compared to wild-type controls. This study characterizes the electrolyte and blood pressure phenotype of hAAT-Tg mice during the inactive and active cycles and investigates the mechanism by which ENaC activation is inhibited in part by a mechanism involving decreased cathepsin B activity and increased ANP levels in the systemic circulation.

3.
Mol Ther Methods Clin Dev ; 11: 131-142, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547047

RESUMO

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by high levels of pathogenic autoantibodies and tissue damage. Multiple studies showed that dendritic cell (DC) activation plays a critical role in SLE pathogenesis. Human alpha 1 antitrypsin (hAAT) is a serine proteinase inhibitor with potent anti-inflammatory and cytoprotective properties. In this study, we first examined the effects of hAAT on the functions of DCs from lupus-prone mice, and we showed that hAAT treatment efficiently inhibited CpG- (TLR9 agonist) induced activation of bone marrow-derived conventional and plasmacytoid DCs as well as the production of pro-inflammatory cytokines. The hAAT treatment also attenuated DC help for B cell proliferation and immunoglobulin M (IgM) production. We next tested the protective effect of hAAT protein and gene therapy using recombinant adeno-associated virus 8 (rAAV8-CB-hAAT) in a spontaneous lupus mouse model, and we showed that both treatments decreased autoantibody levels. Importantly, rAAV8-CB-hAAT did not induce an immune response to its transgene product (hAAT), but it showed more pronounced therapeutic effects in reducing urine protein levels and extending the lifespan of these mice. These results indicate that AAT has therapeutic potential in the treatment of SLE in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA