RESUMO
Metal halide perovskite materials (MHPs) are promising for several applications due to their exceptional properties. Understanding excitonic properties is essential for exploiting these materials. For this purpose, we focus on CsPbBr3 single crystals, which have higher crystal quality, are more stable, and have no Rashba effect at low temperatures compared to other 3D MHPs. We have estimated exciton energy positions, longitudinal-transverse splitting energy, and damping energy using low-temperature reflection spectra. Under high excitation intensity, two biexciton emissions (M-emission) and exciton-exciton scattering emission (P-emission) were observed. We assign the two M-emissions to the emission to the states of longitudinal and transverse excitons, i.e., ML and MT emissions. From the energy position of the MT emission, the biexciton binding energy has been estimated to be â¼2 meV. By analyzing P-emission obtained from the back side of the sample, we have estimated the exciton binding energy to be 17.8-23.7 meV. This estimation minimizes the influence of the wavenumber distribution in the scattering process. In addition, time-resolved transmittance measurements using pulsed white light have revealed the group velocity dispersion. Comparing experimental results with theoretical calculations using the Lorentz model clarifies that exciton dynamics in CsPbBr3 can be described with a simple Lorentz model. These insights enhance the understanding of exciton behavior and support the development of exciton-based devices using MHPs.
RESUMO
The photo-quenching mechanism of 2-(4-phenylboronic acid)-1-pyrenemethamide (C1-APB), which has potential application as a saccharide-recognition sensor, was investigated. By performing temperature-dependent time-resolved photoluminescence measurements, we determined the mechanism responsible for the photo-quenching properties of C1-APB to be a photoinduced electron transfer (PET). Moreover, the dependence of the electron transfer rate (kPET) on the solvent water concentration was explored in detail, and it was found that kPET increased by many orders of magnitude with increasing water concentrations. This phenomenon was analyzed using the Marcus model, in which the electron transfer can be represented by a potential diagram involving the potential barrier (ΔGa) and frequency factor (A). With the aid of temperature-dependent measurements, the contribution of ΔGa and A to the increase in kPET was successfully analyzed independently, which allowed us to discuss the effect of water molecule orientation and change in molecular structure of C1-APB. The temperature-dependence measurements performed in this study offer a powerful research tool for investigating the PET process, and will contribute to the development of molecular recognition fluorescent sensors.
RESUMO
Fluorescence recognition of d-glucose in water with excellent sensitivity, selectivity, and chiral selectivity is desired because d-glucose is an essential component in biological and pathological processes. We report an innovative approach that exploits the 1:2 stoichiometric inclusion complexes of γ-cyclodextrin (γ-CyD) with two molecules of fluorescent monoboronic acid-based receptors, which form a pseudo-diboronic acid moiety as the recognition site for d-glucose in water. Two monoboronic acids (1F and 2N) were easily synthesized without heating or column purification. The 1:2 stoichiometric inclusion complexes (1F/γ-CyD and 2N/γ-CyD) were prepared in a mixture of dimethyl sulfoxide/water (2/98 in v/v) by mixing γ-CyD and the corresponding monoboronic acids. Both 1F/γ-CyD and 2N/γ-CyD exhibited strong turn-on response to d-glucose with excellent selectivity over nine other saccharides in the water-rich solvent at pH 7.4 owing to the ditopic recognition of d-glucose by the pseudo-diboronic acid moieties. The limits of detection of 1F/γ-CyD and 2N/γ-CyD for d-glucose were 1.1 and 1.8 µM, respectively, indicating the remarkable sensitivity for the detection of d-glucose at µM levels. 1F/γ-CyD and 2N/γ-CyD also demonstrated chiral-selective recognition of d-glucose, which is apparent from the 2.0- and 6.3-fold enhancement of fluorescence by the addition of d-glucose relative to l-glucose addition, owing to the chiral pseudo-diboronic acid moieties produced by the chiral γ-CyD cavity. To the best of our knowledge, 2N/γ-CyD has the highest d/l selectivity among hitherto reported fluorescent diboronic acid-based receptors.
Assuntos
gama-Ciclodextrinas , gama-Ciclodextrinas/química , Ácidos Borônicos/química , Glucose/química , Água/química , CorantesRESUMO
One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and its variant have been demonstrated experimentally. Here we demonstrate the superposition of coherent states in quantum measurement which is also a key concept in quantum mechanics. More precisely, we propose and implement a projection measurement onto an arbitrary superposition of two weak coherent states in optical system. The measurement operators are reconstructed experimentally by a novel quantum detector tomography protocol. Our device is realized by combining the displacement operation and photon counting, well established technologies, and thus has implications in various optical quantum information processing applications.
RESUMO
We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI3)0.85(MAPbBr3)0.15. The mixed perovskite was crystallized on a low-temperature prepared brookite TiO2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm2 device and 15.2% for a 1.0 × 1.0 cm2 device.
RESUMO
It is well known that the surface trap states and electronic disorders in the solution-processed CH3 NH3 PbI3 perovskite film affect the solar cell performance significantly and moisture sensitivity of photoactive perovskite material limits its practical applications. Herein, we show the surface modification of a perovskite film with a solution-processable hydrophobic polymer (poly(4-vinylpyridine), PVP), which passivates the undercoordinated lead (Pb) atoms (on the surface of perovskite) by its pyridine Lewis base side chains and thereby eliminates surface-trap states and non-radiative recombination. Moreover, it acts as an electron barrier between the perovskite and hole-transport layer (HTL) to reduce interfacial charge recombination, which led to improvement in open-circuit voltage (Voc ) by 120 to 160â mV whereas the standard cell fabricated in same conditions showed Voc as low as 0.9â V owing to dominating interfacial recombination processes. Consequently, the power conversion efficiency (PCE) increased by 3 to 5 % in the polymer-modified devices (PCE=15 %) with Voc more than 1.05â V and hysteresis-less J-V curves. Advantageously, hydrophobicity of the polymer chain was found to protect the perovskite surface from moisture and improved stability of the non-encapsulated cells, which retained their device performance up to 30â days of exposure to open atmosphere (50 % humidity).
Assuntos
Fontes de Energia Elétrica , Polivinil/química , Energia Solar , Compostos de Cálcio , Interações Hidrofóbicas e Hidrofílicas , Chumbo , Óxidos , Piridinas , Propriedades de Superfície , TitânioRESUMO
We have investigated coherent LO phonon properties in zinc-based II-VI widegap semiconductors, focusing on phonon-plasma coupled modes. By a careful treatment of the time evolution of the signals in ZnS, ZnSe, and ZnTe, we found a frequency upshift as the pump intensity increases. Using a classical coupled oscillator model, we have explained the pump intensity dependence of both the shift and the decay rates by a mixing of highly damped two-photon generated plasma. From the linear dependence between them we can estimate the photo-excited carrier mobilities, leading to a new powerful estimation method to measure the mobility.
RESUMO
An inclusion complex consisting of a boronic acid fluorophore (C1-APB) and ß-cyclodextrin (ß-CyD) acts as a supramolecular sugar sensor whose response mechanism is based on photoinduced electron transfer (PET) from the excited pyrene to the boronic acid. We have investigated the PET process in C1-APB/CyD complexes by using time-resolved photoluminescence (TRPL) measurements at room temperature, and have succeeded in estimating the electron-transfer time to be about 1 ns. We have also studied the effects of CyDs on the PET process by comparing two kinds of CyDs (α-CyD, ß-CyD) under different water-dimethyisulfoxide (DMSO) concentration conditions. We found that the CyDs interacting with the boronic acid moiety completely inhibits PET quenching and increases the monomer fluorescence intensity.
Assuntos
Ácidos Borônicos/química , Ciclodextrinas/química , Corantes Fluorescentes/química , Espectrometria de FluorescênciaRESUMO
Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.
RESUMO
Steady-state and time-resolved photoluminescence (PL) measurements on vapor deposited films of a non-ionic bisazomethine dye have been performed. In the films, it is possible to control the ratio between J-aggregate and crystalline phases of the dye by means of exposure to chloroform vapour, and thus the origin of PL can be determined from comparison between several films. In the films, PL was emitted exclusively from the crystalline phase. Although the origin of PL was not from the J-aggregate phase, some features of the observed PL were very similar to those reported for J-aggregates of ionic dyes. We also found that these features in the vapor deposited films were caused by a competition between free excitons and excitons trapped at defect sites.