Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1228374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809074

RESUMO

Severe inflammation via innate immune system activation causes organ dysfunction. Among these, the central nervous system (CNS) is particularly affected by encephalopathies. These symptoms are associated with the activation of microglia and a potential infiltration of leukocytes. These immune cells have recently been discovered to have the ability to produce extracellular traps (ETs). While these components capture and destroy pathogens, deleterious effects occur such as reduced neuronal excitability correlated with excessive ETs production. In this study, the objectives were to determine (1) whether immune cells form ETs in the CNS during acute inflammation (2) whether ETs produce neuromuscular disorders and (3) whether an immunomodulatory treatment such as ß1-adrenergic blockers limits these effects. We observed an infiltration of neutrophils in the CNS, an activation of microglia and a production of ETs following lipopolysaccharide (LPS) administration. Atenolol, a ß1-adrenergic blocker, significantly decreased the production of ETs in both microglia and neutrophils. This treatment also preserved the gastrocnemius motoneuron excitability. Similar results were observed when the production of ETs was prevented by sivelestat, an inhibitor of ET formation. In conclusion, our results demonstrate that LPS administration increases neutrophils infiltration into the CNS, activates immune cells and produces ETs that directly impair neuromuscular function. Prevention of ETs formation by ß1-adrenergic blockers partly restores this function and could be a good target in order to reduce adverse effects in severe inflammation such as sepsis but also in other motor related pathologies linked to ETs production.


Assuntos
Armadilhas Extracelulares , Camundongos , Animais , Lipopolissacarídeos , Neutrófilos , Inflamação , Leucócitos
2.
Nature ; 617(7960): 386-394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100912

RESUMO

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Assuntos
Plasticidade Celular , Cobre , Inflamação , Transdução de Sinais , Animais , Camundongos , Cobre/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , NAD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peróxido de Hidrogênio/metabolismo , Epigênese Genética/efeitos dos fármacos , Metformina/análogos & derivados , Oxirredução , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética
3.
Eur J Neurosci ; 57(4): 692-704, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537022

RESUMO

Spinal cord injuries involve a primary injury that can lead to permanent loss of function and a secondary injury associated with pathologic and inflammatory processes. Extracellular traps are extracellular structures expressed by immune cells that are primarily composed of chromatin, granular enzymes and histones. Extracellular traps are known to induce tissue damage when overexpressed and could be associated in the occurrence of secondary damage. In the present study, we used flow cytometry to demonstrate that at 1 day following a C2 spinal cord lateral hemisection in male Swiss mice, resident microglia form vital microglia extracellular traps, and infiltrating neutrophils form vital neutrophil extracellular traps. We also used immunolabelling to show that microglia near the lesion area are most likely to form these microglia extracellular traps. As expected, infiltrating neutrophils are located at the site of injury, though only some of them engage in post-injury extracellular trap formation. We also observed the formation of microglia and neutrophil extracellular traps in our sham animal models of durotomy, but formation was less frequent than following the C2 hemisection. Our results demonstrate for the first time that microglia form extracellular traps in the spinal cord following injury and durotomy. It remains however to determine the exact mechanisms and kinetics of neutrophil and microglia extracellular traps formation following spinal cord injury. This information would allow to better mitigate this inflammatory process that may contribute to secondary injury and to effectively target extracellular traps to improve functional outcomes following spinal cord injury.


Assuntos
Medula Cervical , Armadilhas Extracelulares , Traumatismos da Medula Espinal , Camundongos , Animais , Masculino , Medula Cervical/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Microglia/patologia
4.
Biology (Basel) ; 11(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35336846

RESUMO

High spinal cord injuries (SCIs) lead to permanent diaphragmatic paralysis. The search for therapeutics to induce functional motor recovery is essential. One promising noninvasive therapeutic tool that could harness plasticity in a spared descending respiratory circuit is repetitive transcranial magnetic stimulation (rTMS). Here, we tested the effect of chronic high-frequency (10 Hz) rTMS above the cortical areas in C2 hemisected rats when applied for 7 days, 1 month, or 2 months. An increase in intact hemidiaphragm electromyogram (EMG) activity and excitability (diaphragm motor evoked potentials) was observed after 1 month of rTMS application. Interestingly, despite no real functional effects of rTMS treatment on the injured hemidiaphragm activity during eupnea, 2 months of rTMS treatment strengthened the existing crossed phrenic pathways, allowing the injured hemidiaphragm to increase its activity during the respiratory challenge (i.e., asphyxia). This effect could be explained by a strengthening of respiratory descending fibers in the ventrolateral funiculi (an increase in GAP-43 positive fibers), sustained by a reduction in inflammation in the C1-C3 spinal cord (reduction in CD68 and Iba1 labeling), and acceleration of intracellular plasticity processes in phrenic motoneurons after chronic rTMS treatment. These results suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA