Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(9): 5164-5177, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32557891

RESUMO

Diffuse radiation generally increases photosynthetic rates if total radiation is kept constant. Different hypotheses have been proposed to explain this enhancement of photosynthesis, but conclusive results over a wide range of diffuse conditions or about the effect of canopy architecture are lacking. Here, we show the response of canopy photosynthesis to different fractions of diffuse light conditions for five major arable crops (pea, potato, wheat, barley, rapeseed) and cover crops characterized by different canopy architecture. We used 13 years of flux and microclimate measurements over a field with a typical 4 year crop rotation scheme in Switzerland. We investigated the effect of diffuse light on photosynthesis over a gradient of diffuse light fractions ranging from 100% diffuse (overcast sky) to 11% diffuse light (clear-sky conditions). Gross primary productivity (GPP) increased with diffuse fraction and thus was greater under diffuse than direct light conditions if the absolute photon flux density per unit surface area was kept constant. Mean leaf tilt angle (MTA) and canopy height were found to be the best predictors of the diffuse versus direct radiation effect on photosynthesis. Climatic factors, such as the drought index and growing degree days (GDD), had a significant influence on initial quantum yield under direct but not diffuse light conditions, which depended primarily on MTA. The maximum photosynthetic rate at 2,000 µmol m-2  s-1 photosynthetically active radiation under direct conditions strongly depended on GDD, MTA, leaf area index (LAI) and the interaction between MTA and LAI, while under diffuse conditions, this parameter depended mostly on MTA and only to a minor extent on canopy height and their interaction. The strongest photosynthesis enhancement under diffuse light was found for wheat, barley and rapeseed, whereas the lowest was for pea. Thus, we suggest that measuring canopy architecture and diffuse radiation will greatly improve GPP estimates of global cropping systems.


Assuntos
Produtos Agrícolas , Fotossíntese , Luz , Folhas de Planta , Suíça , Triticum
2.
Glob Chang Biol ; 25(4): e4-e6, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614142

RESUMO

In our recent study in Global Change Biology (Li et al., ), we examined the relationship between solar-induced chlorophyll fluorescence (SIF) measured from the Orbiting Carbon Observatory-2 (OCO-2) and gross primary productivity (GPP) derived from eddy covariance flux towers across the globe, and we discovered that there is a nearly universal relationship between SIF and GPP across a wide variety of biomes. This finding reveals the tremendous potential of SIF for accurately mapping terrestrial photosynthesis globally.

3.
Funct Plant Biol ; 46(3): 213-227, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-32172765

RESUMO

To include within-canopy leaf acclimation responses to light and other resource gradients in photosynthesis modelling, it is imperative to understand the variation of leaf structural, biochemical and physiological traits from canopy top to bottom. In the present study, leaf photosynthetic traits for top and bottom canopy leaves, canopy structure and light profiles, were measured over one growing season for two contrasting crop types, winter barley (Hordeum vulgare L.) and rape seed (Brassica napus L.). With the exception of quantum yield, other traits such as maximum photosynthetic capacity (Amax), dark respiration, leaf nitrogen and chlorophyll contents, and leaf mass per area, showed consistently higher (P<0.05) values for top leaves throughout the growing season and for both crop types. Even though Amax was higher for top leaves, the bottom half of the canopy intercepted more light and thus contributed the most to total canopy photosynthesis up until senescence set in. Incorporating this knowledge into a simple top/bottom-leaf upscaling scheme, separating top and bottom leaves, resulted in a better match between estimated and measured total canopy photosynthesis, compared with a one-leaf upscaling scheme. Moreover, aggregating to daily and weekly temporal resolutions progressively increased the linearity of the leaf photosynthetic responses to light for top leaves.


Assuntos
Produtos Agrícolas , Fotossíntese , Aclimatação , Clorofila , Luz
4.
Glob Chang Biol ; 24(9): 3990-4008, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29733483

RESUMO

Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2  = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2  = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2  = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.


Assuntos
Ciclo do Carbono , Clorofila/efeitos da radiação , Ecossistema , Luz Solar , Carbono , Monitoramento Ambiental , Fluorescência , Florestas , Fotossíntese , Imagens de Satélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA