Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766193

RESUMO

An elevated level of lipoprotein(a), or Lp(a), in the bloodstream has been causally linked to the development of atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Steady state levels of circulating lipoproteins are modulated by their rate of clearance, but the identity of the Lp(a) uptake receptor(s) has been controversial. In this study, we performed a genome-scale CRISPR screen to functionally interrogate all potential Lp(a) uptake regulators in HuH7 cells. Strikingly, the top positive and negative regulators of Lp(a) uptake in our screen were LDLR and MYLIP , encoding the LDL receptor and its ubiquitin ligase IDOL, respectively. We also found a significant correlation for other genes with established roles in LDLR regulation. No other gene products, including those previously proposed as Lp(a) receptors, exhibited a significant effect on Lp(a) uptake in our screen. We validated the functional influence of LDLR expression on HuH7 Lp(a) uptake, confirmed in vitro binding between the LDLR extracellular domain and purified Lp(a), and detected an association between loss-of-function LDLR variants and increased circulating Lp(a) levels in the UK Biobank cohort. Together, our findings support a central role for the LDL receptor in mediating Lp(a) uptake by hepatocytes.

2.
Proc Natl Acad Sci U S A ; 121(19): e2322164121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687799

RESUMO

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during midembryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these two paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Animais , Humanos , Camundongos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética
3.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463989

RESUMO

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during mid-embryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these 2 paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.

4.
J Virol ; 97(12): e0127623, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975674

RESUMO

ABSTRACT: Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complex­IFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.


Assuntos
COVID-19 , Células Epiteliais , Interferon Tipo I , Pulmão , Humanos , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Interferon Tipo I/imunologia , Pulmão/patologia , Pulmão/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Linhagem Celular , Proliferação de Células
5.
J Proteome Res ; 22(11): 3439-3446, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37844105

RESUMO

Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..


Assuntos
Proteínas de Transporte , Retículo Endoplasmático , Proteínas de Membrana , Humanos , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi , Proteínas de Membrana/metabolismo , Transporte Proteico
6.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066360

RESUMO

Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles/tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif.

7.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909579

RESUMO

Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain poorly understood. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top 4 genes identified in our screen encode components of the same type I interferon signaling complex - IFNAR1, IFNAR2, JAK1, and TYK2. The 5th gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.

8.
Elife ; 112022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193893

RESUMO

PCSK9 negatively regulates low-density lipoprotein receptor (LDLR) abundance on the cell surface, leading to decreased hepatic clearance of LDL particles and increased levels of plasma cholesterol. We previously identified SURF4 as a cargo receptor that facilitates PCSK9 secretion in HEK293T cells (Emmer et al., 2018). Here, we generated hepatic SURF4-deficient mice (Surf4fl/fl Alb-Cre+) to investigate the physiologic role of SURF4 in vivo. Surf4fl/fl Alb-Cre+ mice exhibited normal viability, gross development, and fertility. Plasma PCSK9 levels were reduced by ~60% in Surf4fl/fl Alb-Cre+ mice, with a corresponding ~50% increase in steady state LDLR protein abundance in the liver, consistent with SURF4 functioning as a cargo receptor for PCSK9. Surprisingly, these mice exhibited a marked reduction in plasma cholesterol and triglyceride levels out of proportion to the partial increase in hepatic LDLR abundance. Detailed characterization of lipoprotein metabolism in these mice instead revealed a severe defect in hepatic lipoprotein secretion, consistent with prior reports of SURF4 also promoting the secretion of apolipoprotein B (APOB). Despite a small increase in liver mass and lipid content, histologic evaluation revealed no evidence of steatohepatitis or fibrosis in Surf4fl/fl Alb-Cre+ mice. Acute depletion of hepatic SURF4 by CRISPR/Cas9 or liver-targeted siRNA in adult mice confirms these findings. Together, these data support the physiologic significance of SURF4 in the hepatic secretion of PCSK9 and APOB-containing lipoproteins and its potential as a therapeutic target in atherosclerotic cardiovascular diseases.


Assuntos
Pró-Proteína Convertase 9 , Receptores de LDL , Camundongos , Humanos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , RNA Interferente Pequeno/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fígado/metabolismo , Apolipoproteínas B/metabolismo , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
9.
J Lipid Res ; 63(8): 100248, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753407

RESUMO

The low-density lipoprotein receptor (LDLR) mediates the hepatic uptake of circulating low-density lipoproteins (LDLs), a process that modulates the development of atherosclerotic cardiovascular disease. We recently identified RAB10, encoding a small GTPase, as a positive regulator of LDL uptake in hepatocellular carcinoma cells (HuH7) in a genome-wide CRISPR screen, though the underlying molecular mechanism for this effect was unknown. We now report that RAB10 regulates hepatocyte LDL uptake by promoting the recycling of endocytosed LDLR from RAB11-positive endosomes to the plasma membrane. We also show that RAB10 similarly promotes the recycling of the transferrin receptor, which binds the transferrin protein that mediates the transport of iron in the blood, albeit from a distinct RAB4-positive compartment. Taken together, our findings suggest a model in which RAB10 regulates LDL and transferrin uptake by promoting both slow and rapid recycling routes for their respective receptor proteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Endocitose , Endossomos , Hepatócitos , Lipoproteínas LDL , Receptores de LDL , Receptores da Transferrina , Transferrina , Proteínas rab de Ligação ao GTP
10.
Biochem J ; 479(7): 839-855, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35322856

RESUMO

α1-antitrypsin (AAT) is a serine protease inhibitor synthesized in hepatocytes and protects the lung from damage by neutrophil elastase. AAT gene mutations result in AAT deficiency (AATD), which leads to lung and liver diseases. The AAT Z variant forms polymer within the endoplasmic reticulum (ER) of hepatocytes and results in reduction in AAT secretion and severe disease. Previous studies demonstrated a secretion defect of AAT in LMAN1 deficient cells, and mild decreases in AAT levels in male LMAN1 and MCFD2 deficient mice. LMAN1 is a transmembrane lectin that forms a complex with a small soluble protein MCFD2. The LMAN1-MCFD2 protein complex cycles between the ER and the Golgi. Here, we report that LMAN1 and MCFD2 knockout (KO) HepG2 and HEK293T cells display reduced AAT secretion and elevated intracellular AAT levels due to a delayed ER-to-Golgi transport of AAT. Secretion defects in KO cells were rescued by wild-type LMAN1 or MCFD2, but not by mutant proteins. Elimination of the second glycosylation site of AAT abolished LMAN1 dependent secretion. Co-immunoprecipitation experiment in MCFD2 KO cells suggested that AAT interaction with LMAN1 is independent of MCFD2. Furthermore, our results suggest that secretion of the Z variant, both monomers and polymers, is also LMAN1-dependent. Results provide direct evidence supporting that the LMAN1-MCFD2 complex is a cargo receptor for the ER-to-Golgi transport of AAT and that interactions of LMAN1 with an N-glycan of AAT is critical for this process. These results have implications in production of recombinant AAT and in developing treatments for AATD patients.


Assuntos
Fator VIII , Fator V , Lectinas de Ligação a Manose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Fator V/genética , Fator V/metabolismo , Fator VIII/genética , Células HEK293 , Humanos , Masculino , Lectinas de Ligação a Manose/genética , Camundongos , Proteínas de Transporte Vesicular/genética , alfa 1-Antitripsina/genética
11.
PLoS Pathog ; 18(3): e1010377, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35231079

RESUMO

SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. In liver-derived HuH7 cells, we identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual HuH7 cell lines with disruption of SMAD4, EP300, PIAS1, or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Orthogonal screening of lung-derived Calu-3 cells revealed a distinct set of ACE2 modifiers comprised of ACE2, KDM6A, MOGS, GPAA1, and UGP2. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry, highlight the cell type specificity of ACE2 regulatory networks, and suggest potential targets for therapeutic development.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Sci Rep ; 11(1): 15900, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354120

RESUMO

The membrane protein angiotensin-converting enzyme 2 (ACE2) is a physiologic regulator of the renin-angiotensin system and the cellular receptor for the SARS-CoV-2 virus. Prior studies of ACE2 expression have primarily focused on mRNA abundance, with investigation at the protein level limited by uncertain specificity of commercial ACE2 antibodies. Here, we report our development of a sensitive and specific flow cytometry-based assay for cellular ACE2 protein abundance. Application of this approach to multiple cell lines revealed an unexpected degree of cellular heterogeneity, with detectable ACE2 protein in only a subset of cells in each isogenic population. This heterogeneity was mediated at the mRNA level by transcripts predominantly initiated from the ACE2 proximal promoter. ACE2 expression was heritable but not fixed over multiple generations of daughter cells, with gradual drift toward the original heterogeneous background. RNA-seq profiling identified distinct transcriptomes of ACE2-expressing relative cells to non-expressing cells, with enrichment in functionally related genes and transcription factor target sets. Our findings provide a validated approach for the specific detection of ACE2 protein at the surface of single cells, support an epigenetic mechanism of ACE2 gene regulation, and identify specific pathways associated with ACE2 expression in HuH7 cells.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Transcriptoma , Enzima de Conversão de Angiotensina 2/análise , Linhagem Celular , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética , Receptores Virais/análise , Receptores Virais/genética , SARS-CoV-2/isolamento & purificação
13.
bioRxiv ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34127970

RESUMO

SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. We identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2 in HuH7 cells. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual cell lines with disruption of SMAD4, EP300, PIAS1 , or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry and suggest potential targets for therapeutic development.

14.
bioRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791703

RESUMO

The membrane protein angiotensin-converting enzyme 2 (ACE2) is a physiologic regulator of the renin-angiotensin system and the cellular receptor for the SARS-CoV-2 virus. Prior studies of ACE2 expression have primarily focused on mRNA abundance, with investigation at the protein level limited by uncertain specificity of commercial ACE2 antibodies. Here, we report our development of a sensitive and specific flow cytometry-based assay for cellular ACE2 protein abundance. Application of this approach to multiple cell lines revealed an unexpected degree of cellular heterogeneity, with detectable ACE2 protein in only a subset of cells in each isogenic population. This heterogeneity was mediated at the mRNA level by transcripts predominantly initiated from the ACE2 proximal promoter. ACE2 expression was heritable but not fixed over multiple generations of daughter cells, with gradual drift toward the original heterogeneous background. RNA-seq profiling identified distinct transcriptomes of ACE2-expressing relative cells to non-expressing cells, with enrichment in functionally related genes and transcription factor target sets. Our findings provide a validated approach for the specific detection of ACE2 protein at the surface of single cells, support an epigenetic mechanism ACE2 gene regulation, and identify specific pathways associated with ACE2 expression in HuH7 cells.

15.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33769311

RESUMO

Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we report a possibly novel approach to rapid generation of potent broadly neutralizing human anti-SARS-CoV-2 Abs. We isolated SARS-CoV-2 spike protein-specific memory B cells by panning from the blood of convalescent subjects after infection with SARS-CoV-2 and sequenced and expressed Ig genes from individual B cells as human mAbs. All of 43 human mAbs generated in this way neutralized SARS-CoV-2. Eighteen of the forty-three human mAbs exhibited half-maximal inhibitory concentrations (IC50) of 6.7 × 10-12 M to 6.7 × 10-15 M for spike-pseudotyped virus. Seven of the human mAbs also neutralized (with IC50 < 6.7 × 10-12 M) viruses pseudotyped with mutant spike proteins (including receptor-binding domain mutants and the S1 C-terminal D614G mutant). Neutralization of the Wuhan Hu-1 founder strain and of some variants decreased when coding sequences were reverted to germline, suggesting that potency of neutralization was acquired by somatic hypermutation and selection of B cells. These results indicate that infection with SARS-CoV-2 evokes high-affinity B cell responses, some products of which are broadly neutralizing and others highly strain specific. We also identify variants that would potentially resist immunity evoked by infection with the Wuhan Hu-1 founder strain or by vaccines developed with products of that strain, suggesting evolutionary courses that SARS-CoV-2 could take.


Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/genética , COVID-19/terapia , COVID-19/virologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Memória Imunológica , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , SARS-CoV-2/genética , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
16.
PLoS Genet ; 17(1): e1009285, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513160

RESUMO

Hypercholesterolemia is a causal and modifiable risk factor for atherosclerotic cardiovascular disease. A critical pathway regulating cholesterol homeostasis involves the receptor-mediated endocytosis of low-density lipoproteins into hepatocytes, mediated by the LDL receptor. We applied genome-scale CRISPR screening to query the genetic determinants of cellular LDL uptake in HuH7 cells cultured under either lipoprotein-rich or lipoprotein-starved conditions. Candidate LDL uptake regulators were validated through the synthesis and secondary screening of a customized library of gRNA at greater depth of coverage. This secondary screen yielded significantly improved performance relative to the primary genome-wide screen, with better discrimination of internal positive controls, no identification of negative controls, and improved concordance between screen hits at both the gene and gRNA level. We then applied our customized gRNA library to orthogonal screens that tested for the specificity of each candidate regulator for LDL versus transferrin endocytosis, the presence or absence of genetic epistasis with LDLR deletion, the impact of each perturbation on LDLR expression and trafficking, and the generalizability of LDL uptake modifiers across multiple cell types. These findings identified several previously unrecognized genes with putative roles in LDL uptake and suggest mechanisms for their functional interaction with LDLR.


Assuntos
Aterosclerose/genética , Colesterol/genética , Lipoproteínas LDL/genética , Receptores de LDL/genética , Aterosclerose/patologia , Sistemas CRISPR-Cas/genética , Colesterol/metabolismo , Endocitose/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Lipoproteínas LDL/metabolismo , RNA Guia de Cinetoplastídeos/genética
17.
Cell Metab ; 33(2): 350-366.e7, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186557

RESUMO

Efficient delivery of specific cargos in vivo poses a major challenge to the secretory pathway, which shuttles products encoded by ∼30% of the genome. Newly synthesized protein and lipid cargos embark on the secretory pathway via COPII-coated vesicles, assembled by the GTPase SAR1 on the endoplasmic reticulum (ER), but how lipid-carrying lipoproteins are distinguished from the general protein cargos in the ER and selectively secreted has not been clear. Here, we show that this process is quantitatively governed by the GTPase SAR1B and SURF4, a high-efficiency cargo receptor. While both genes are implicated in lipid regulation in humans, hepatic inactivation of either mouse Sar1b or Surf4 selectively depletes plasma lipids to near-zero and protects the mice from atherosclerosis. These findings show that the pairing between SURF4 and SAR1B synergistically operates a specialized, dosage-sensitive transport program for circulating lipids, while further suggesting a potential translation to treat atherosclerosis and related cardio-metabolic diseases.


Assuntos
Retículo Endoplasmático/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Homeostase , Humanos , Lipídeos/sangue , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
PLoS One ; 15(1): e0227450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978056

RESUMO

Newly synthesized proteins co-translationally inserted into the endoplasmic reticulum (ER) lumen may be recruited into anterograde transport vesicles by their association with specific cargo receptors. We recently identified a role for the cargo receptor SURF4 in facilitating the secretion of PCSK9 in cultured cells. To examine the function of SURF4 in vivo, we used CRISPR/Cas9-mediated gene editing to generate mice with germline loss-of-function mutations in Surf4. Heterozygous Surf4+/- mice exhibit grossly normal appearance, behavior, body weight, fecundity, and organ development, with no significant alterations in circulating plasma levels of PCSK9, apolipoprotein B, or total cholesterol, and a detectable accumulation of intrahepatic apoliprotein B. Homozygous Surf4-/- mice exhibit embryonic lethality, with complete loss of all Surf4-/- offspring between embryonic days 3.5 and 9.5. In contrast to the milder murine phenotypes associated with deficiency of known SURF4 cargoes, the embryonic lethality of Surf4-/- mice implies the existence of additional SURF4 cargoes or functions that are essential for murine early embryonic development.


Assuntos
Desenvolvimento Embrionário , Proteínas de Membrana/genética , Alelos , Animais , Apolipoproteínas B/sangue , Apolipoproteínas B/metabolismo , Sistemas CRISPR-Cas/genética , Colesterol/sangue , Edição de Genes , Heterozigoto , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/metabolismo
19.
Annu Rev Med ; 71: 71-83, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31469969

RESUMO

The modern genomic era has seen remarkable advancement in our understanding of the molecular basis for disease, yet translation of basic discoveries into new disease treatments has arguably lagged behind. Recently, breakthroughs in genome editing technologies have created hope for their potential to directly treat the genetic causes of disease. Like any therapeutic intervention, genome editing should be considered in light of its potential risks and benefits. In this review, we highlight the promise of genome editing therapies, as well as the conceptual and technical barriers to their clinical application, with a special emphasis on hematologic malignancies.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Neoplasias Hematológicas/genética , Feminino , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/terapia , Humanos , Masculino , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Prognóstico , Medição de Risco , Análise de Sobrevida , Resultado do Tratamento
20.
Elife ; 72018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30251625

RESUMO

PCSK9 is a secreted protein that regulates plasma cholesterol levels and cardiovascular disease risk. Prior studies suggested the presence of an ER cargo receptor that recruits PCSK9 into the secretory pathway, but its identity has remained elusive. Here, we apply a novel approach that combines proximity-dependent biotinylation and proteomics together with genome-scale CRISPR screening to identify SURF4, a homologue of the yeast cargo receptor Erv29p, as a primary mediator of PCSK9 secretion in HEK293T cells. The functional contribution of SURF4 to PCSK9 secretion was confirmed with multiple independent SURF4-targeting sgRNAs, clonal SURF4-deficient cell lines, and functional rescue with SURF4 cDNA. SURF4 was found to localize to the early secretory pathway where it physically interacts with PCSK9. Deletion of SURF4 resulted in ER accumulation and decreased extracellular secretion of PCSK9. These findings support a model in which SURF4 functions as an ER cargo receptor mediating the efficient cellular secretion of PCSK9.


Assuntos
Proteínas de Membrana/metabolismo , Pró-Proteína Convertase 9/metabolismo , Biotinilação , Sistemas CRISPR-Cas/genética , Retículo Endoplasmático/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Mutagênese/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Via Secretória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA