Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2313197120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988466

RESUMO

A lead aryl pyrrolidinone anilide identified using high-throughput in vivo screening was optimized for efficacy, crop safety, and weed spectrum, resulting in tetflupyrolimet. Known modes of action were ruled out through in vitro enzyme and in vivo plant-based assays. Genomic sequencing of aryl pyrrolidinone anilide-resistant Arabidopsis thaliana progeny combined with nutrient reversal experiments and metabolomic analyses confirmed that the molecular target of the chemistry was dihydroorotate dehydrogenase (DHODH), the enzyme that catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway. In vitro enzymatic and biophysical assays and a cocrystal structure with purified recombinant plant DHODH further confirmed this enzyme as the target site of this class of chemistry. Like known inhibitors of other DHODH orthologs, these molecules occupy the membrane-adjacent binding site of the electron acceptor ubiquinone. Identification of a new herbicidal chemical scaffold paired with a novel mode of action, the first such finding in over three decades, represents an important leap in combatting weed resistance and feeding a growing worldwide population.


Assuntos
Herbicidas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Herbicidas/farmacologia , Pirimidinas/farmacologia , Anilidas , Pirrolidinonas , Inibidores Enzimáticos/farmacologia
2.
J Biol Chem ; 298(10): 102451, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063997

RESUMO

The heme-regulated inhibitor (HRI) is a heme-sensing kinase that regulates mRNA translation in erythroid cells. In heme deficiency, HRI is activated to phosphorylate eukaryotic initiation factor 2α and halt production of globins, thus avoiding accumulation of heme-free globin chains. HRI is inhibited by heme via binding to one or two heme-binding domains within the HRI N-terminal and kinase domains. HRI has recently been found to inhibit fetal hemoglobin (HbF) production in adult erythroid cells. Depletion of HRI increases HbF production, presenting a therapeutically exploitable target for the treatment of patients with sickle cell disease or thalassemia, which benefit from elevated HbF levels. HRI is known to be an oligomeric enzyme that is activated through autophosphorylation, although the exact nature of the HRI oligomer, its relation to autophosphorylation, and its mode of heme regulation remain unclear. Here, we employ biochemical and biophysical studies to demonstrate that HRI forms a dimeric species that is not dependent on autophosphorylation, the C-terminal coiled-coil domain in HRI is essential for dimer formation, and dimer formation facilitates efficient autophosphorylation and activation of HRI. We also employ kinetic studies to demonstrate that the primary avenue by which heme inhibits HRI is through the heme-binding site within the kinase domain, and that this inhibition is relatively independent of binding of ATP and eukaryotic initiation factor 2α substrates. Together, these studies highlight the mode of heme inhibition and the importance of dimerization in human HRI heme-sensing activity.


Assuntos
Heme , eIF-2 Quinase , Humanos , Dimerização , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Heme/metabolismo , Cinética , Fosforilação , Ligação Proteica
3.
Structure ; 26(8): 1137-1143.e3, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30099988

RESUMO

The kinase associated-1 (KA1) domain is found at the C-terminus of multiple Ser/Thr protein kinases from yeast to humans, and has been assigned autoinhibitory, membrane-binding, and substrate-targeting roles. Here, we report the crystal structure of the MARK1 kinase/UBA domain bound to its autoinhibitory KA1 domain, revealing an unexpected interface at the αD helix and contacts with both the N- and C-lobes of the kinase domain. We confirm the binding interface location in kinetic studies of variants mutated on the kinase domain surface. Together with other MARK kinase structures, the data implicate that the KA1 domain blocks peptide substrate binding. The structure highlights the kinase-specific autoinhibitory binding modes of different KA1 domains, and provides potential new avenues by which to intervene therapeutically in Alzheimer's disease and cancers in which MARK1 or related kinases are implicated.


Assuntos
Quinase 1 do Ponto de Checagem/química , Peptídeos/química , Proteínas Serina-Treonina Quinases/química , Sítios de Ligação , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica
4.
J Biol Chem ; 292(46): 19024-19033, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28972186

RESUMO

Precise control of the cell cycle allows for timely repair of genetic material prior to replication. One factor intimately involved in this process is checkpoint kinase 1 (Chk1), a DNA damage repair inducing Ser/Thr protein kinase that contains an N-terminal kinase domain and a C-terminal regulatory region consisting of a ∼100-residue linker followed by a putative kinase-associated 1 (KA1) domain. We report the crystal structure of the human Chk1 KA1 domain, demonstrating striking structural homology with other sequentially diverse KA1 domains. Separately purified Chk1 kinase and KA1 domains are intimately associated in solution, which results in inhibition of Chk1 kinase activity. Using truncation mutants and site-directed mutagenesis, we define the inhibitory face of the KA1 domain as a series of basic residues residing on two conserved regions of the primary structure. These findings point to KA1-mediated intramolecular autoinhibition as a key regulatory mechanism of human Chk1, and provide new therapeutic possibilities with which to attack this validated oncology target with small molecules.


Assuntos
Quinase 1 do Ponto de Checagem/química , Sequência de Aminoácidos , Domínio Catalítico , Ciclo Celular , Quinase 1 do Ponto de Checagem/metabolismo , Cristalografia por Raios X , Reparo do DNA , Ativação Enzimática , Humanos , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
5.
Biochem J ; 474(3): 385-398, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879374

RESUMO

Protein kinases are frequently regulated by intramolecular autoinhibitory interactions between protein modules that are reversed when these modules bind other 'activating' protein or membrane-bound targets. One group of kinases, the MAP/microtubule affinity-regulating kinases (MARKs) contain a poorly understood regulatory module, the KA1 (kinase associated-1) domain, at their C-terminus. KA1 domains from MARK1 and several related kinases from yeast to humans have been shown to bind membranes containing anionic phospholipids, and peptide ligands have also been reported. Deleting or mutating the C-terminal KA1 domain has been reported to activate the kinase in which it is found - also suggesting an intramolecular autoinhibitory role. Here, we show that the KA1 domain of human MARK1 interacts with, and inhibits, the MARK1 kinase domain. Using site-directed mutagenesis, we identify residues in the KA1 domain required for this autoinhibitory activity, and find that residues involved in autoinhibition and in anionic phospholipid binding are the same. We also demonstrate that a 'mini' MARK1 becomes activated upon association with vesicles containing anionic phospholipids, but only if the protein is targeted to these vesicles by a second signal. These studies provide a mechanistic basis for understanding how MARK1 and its relatives may require more than one signal at the membrane surface to control their activation at the correct location and time. MARK family kinases have been implicated in a plethora of disease states including Alzheimer's, cancer, and autism, so advancing our understanding of their regulatory mechanisms may ultimately have therapeutic value.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/química , Peptídeos/química , Fosfolipídeos/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Difração de Raios X
6.
J Biol Chem ; 289(35): 24059-68, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25023290

RESUMO

The membrane-bound tetraacyldisaccharide-1-phosphate 4'-kinase, LpxK, catalyzes the sixth step of the lipid A (Raetz) biosynthetic pathway and is a viable antibiotic target against emerging Gram-negative pathogens. We report the crystal structure of lipid IVA, the LpxK product, bound to the enzyme, providing a rare glimpse into interfacial catalysis and the surface scanning strategy by which many poorly understood lipid modification enzymes operate. Unlike the few previously structurally characterized proteins that bind lipid A or its precursors, LpxK binds almost exclusively to the glucosamine/phosphate moieties of the lipid molecule. Steady-state kinetic analysis of multiple point mutants of the lipid-binding pocket pinpoints critical residues involved in substrate binding, and characterization of N-terminal helix truncation mutants uncovers the role of this substructure as a hydrophobic membrane anchor. These studies make critical contributions to the limited knowledge surrounding membrane-bound enzymes that act upon lipid substrates and provide a structural template for designing small molecule inhibitors targeting this essential kinase.


Assuntos
Lipídeos/química , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Cinética , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Mutação Puntual , Ligação Proteica , Conformação Proteica
7.
Biochemistry ; 52(13): 2280-90, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23464738

RESUMO

The sixth step in the lipid A biosynthetic pathway involves phosphorylation of the tetraacyldisaccharide-1-phosphate (DSMP) intermediate by the cytosol-facing inner membrane kinase LpxK, a member of the P-loop-containing nucleoside triphosphate (NTP) hydrolase superfamily. We report the kinetic characterization of LpxK from Aquifex aeolicus and the crystal structures of LpxK in complex with ATP in a precatalytic binding state, the ATP analogue AMP-PCP in the closed catalytically competent conformation, and a chloride anion revealing an inhibitory conformation of the nucleotide-binding P-loop. We demonstrate that LpxK activity in vitro requires the presence of a detergent micelle and formation of a ternary LpxK-ATP/Mg(2+)-DSMP complex. Using steady-state kinetics, we have identified crucial active site residues, leading to the proposal that the interaction of D99 with H261 acts to increase the pKa of the imidazole moiety, which in turn serves as the catalytic base to deprotonate the 4'-hydroxyl of the DSMP substrate. The fact that an analogous mechanism has not yet been observed for other P-loop kinases highlights LpxK as a distinct member of the P-loop kinase family, a notion that is also reflected through its localization at the membrane, lipid substrate, and overall structure.


Assuntos
Bactérias/enzimologia , Lipídeo A/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Detergentes/metabolismo , Cinética , Magnésio/metabolismo , Modelos Moleculares , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Mutação Puntual , Conformação Proteica
8.
Proc Natl Acad Sci U S A ; 109(32): 12956-61, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826246

RESUMO

In Gram-negative bacteria, the hydrophobic anchor of the outer membrane lipopolysaccharide is lipid A, a saccharolipid that plays key roles in both viability and pathogenicity of these organisms. The tetraacyldisaccharide 4'-kinase (LpxK) of the diverse P-loop-containing nucleoside triphosphate hydrolase superfamily catalyzes the sixth step in the biosynthetic pathway of lipid A, and is the only known P-loop kinase to act upon a lipid substrate at the membrane. Here, we report the crystal structures of apo- and ADP/Mg(2+)-bound forms of Aquifex aeolicus LpxK to a resolution of 1.9 Å and 2.2 Å, respectively. LpxK consists of two α/ß/α sandwich domains connected by a two-stranded ß-sheet linker. The N-terminal domain, which has most structural homology to other family members, is responsible for catalysis at the P-loop and positioning of the disaccharide-1-phosphate substrate for phosphoryl transfer on the inner membrane. The smaller C-terminal domain, a substructure unique to LpxK, helps bind the nucleotide substrate and Mg(2+) cation using a 25° hinge motion about its base. Activity was severely reduced in alanine point mutants of conserved residues D138 and D139, which are not directly involved in ADP or Mg(2+) binding in our structures, indicating possible roles in phosphoryl acceptor positioning or catalysis. Combined structural and kinetic studies have led to an increased understanding of the enzymatic mechanism of LpxK and provided the framework for structure-based antimicrobial design.


Assuntos
Vias Biossintéticas/fisiologia , Bactérias Aeróbias Gram-Negativas/enzimologia , Lipídeo A/biossíntese , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica , Vias Biossintéticas/genética , Cromatografia em Camada Fina , Cristalografia por Raios X , Primers do DNA/genética , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Mutação Puntual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA