Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Faraday Discuss ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297322

RESUMO

The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of 1H resolution improvement at ultra-fast MAS and use solely 1H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to 13C-detected experiments, without the need to employ dynamic nuclear polarization.

2.
Faraday Discuss ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291342

RESUMO

We determine the complete atomic-level structure of the amorphous form of the drug atuliflapon, a 5-lipooxygenase activating protein (FLAP) inhibitor, via chemical-shift-driven NMR crystallography. The ensemble of preferred structures allows us to identify a number of specific conformations and interactions that stabilize the amorphous structure. These include preferred hydrogen-bonding motifs with water and with other drug molecules, as well as conformations of the cyclohexane and pyrazole rings that stabilize structure by indirectly allowing for optimization of hydrogen bonding.

3.
Chem Sci ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39309076

RESUMO

Dynamic Nuclear Polarization (DNP) can significantly enhance the sensitivity of solid-state NMR. In DNP, microwave irradiation induces polarization transfer from unpaired electron spins to 1H nuclear spins via hyperfine couplings and spin-diffusion. The structure of the polarizing agents that host the electron spins is key for DNP efficiency. Currently, only a handful of structures perform well at very high magnetic fields (≥18.8 T), and enhancements are significantly lower than those obtained at lower fields. Here, we introduce a new series of water-soluble nitroxide biradicals with a scaffold augmented by dihydroxypropyl antenna chains that perform significantly better than previous dinitroxides at 18.8 T. The new radical M-TinyPol(OH)4 yields enhancement factors of ∼220 at 18.8 T and 60 kHz MAS, which is a nearly factor 2 larger than for the previous best performing dinitroxides. The performance is understood through 2H ESEEM measurements to probe solvent accessibility, supported by Molecular Dynamics simulations, and by experiments on deuterated samples. We find that the deuterated glycerol molecules in the matrix are located mainly in the second solvation shell of the NO bond, limiting access for protonated water molecules, and restricting spin diffusion pathways. This provides a rational understanding of why the dihydroxypropyl chains present in the best-performing structures are essential to deliver the polarization to the bulk solution.

4.
J Phys Chem A ; 128(33): 7005-7012, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39120636

RESUMO

1H-detected dynamic nuclear polarization (DNP)-enhanced fast magic angle spinning (MAS) NMR experiments provide unprecedented sensitivity to study the structure and dynamics in advanced materials and biomolecules. However, in relayed DNP experiments, DNP enhancements decrease with faster MAS rates, which is detrimental for sensitivity. The decrease is because 1H-1H spin diffusion rates are significantly reduced at fast MAS frequencies. To improve sensitivity at these fast MAS rates, here, we propose to combine fast polarization build-up by relay at slow MAS rate with high-resolution 1H NMR at fast MAS for acquisition. We perform experiments on l-histidine·HCl·H2O with MAS rates of up to 65 kHz using a 0.7 mm DNP probe at 18.8 T and 100 K. We obtain a 35% improvement in sensitivity in experiments where the sample is polarized at 20 kHz MAS and where the signal is acquired at 60 kHz MAS.

5.
Chem Mater ; 36(15): 7525-7532, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39156713

RESUMO

Ion migration is an important phenomenon affecting the performance of hybrid perovskite solar cells. It is particularly challenging, however, to disentangle the contribution of H+ diffusion from that of other ions, and the atomic-scale mechanism remains unclear. Here, we use 2H exchange NMR to prove that 2H+ ions exchange between MA+ cations on the time scale of seconds for both MAPbI3 and FA0.7MA0.3PbI3 perovskites. We do this by exploiting 15N-enriched MA+ to label the cations by their 15N spin state. The exchange rates and activation energy are then calculated by performing experiments as functions of mixing time and temperature. By comparing the measured exchange rates to previously measured bulk H+ diffusivities, we demonstrate that, after dissociating, H+ ions travel through the lattice before associating to another cation rather than hopping between adjacent cations.

6.
Nat Commun ; 15(1): 7139, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164254

RESUMO

The presence of defects at the interface between the perovskite film and the carrier transport layer poses significant challenges to the performance and stability of perovskite solar cells (PSCs). Addressing this issue, we introduce a dual host-guest (DHG) complexation strategy to modulate both the bulk and interfacial properties of FAPbI3-rich PSCs. Through NMR spectroscopy, a synergistic effect of the dual treatment is observed. Additionally, electro-optical characterizations demonstrate that the DHG strategy not only passivates defects but also enhances carrier extraction and transport. Remarkably, employing the DHG strategy yields PSCs with power conversion efficiencies (PCE) of 25.89% (certified at 25.53%). Furthermore, these DHG-modified PSCs exhibit enhanced operational stability, retaining over 96.6% of their initial PCE of 25.55% after 1050 hours of continuous operation under one-sun illumination, which was the highest initial value in the recently reported articles. This work establishes a promising pathway for stabilizing high-efficiency perovskite photovoltaics through supramolecular engineering, marking a significant advancement in the field.

7.
J Phys Chem Lett ; 15(31): 7954-7961, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39074399

RESUMO

Knowledge of the mechanism by which polymorphic inorganic species, such as carbonates, are formed is crucial to understand and guide the selective crystallization of end products. Recently it has been shown that a key step in the crystallization of calcium carbonate is the formation of intermediate species known as prenucleation clusters. However, the observation of these prenucleation clusters in solution is exceedingly challenging because of their short lifetime and low concentrations. Here, using dissolution DNP-enhanced NMR spectroscopy, we observe signals from prenucleation species of calcium carbonate from which the kinetics of formation and conversion are determined.

8.
J Am Chem Soc ; 146(29): 19667-19672, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007869

RESUMO

The inherently low sensitivity of nuclear magnetic resonance (NMR) spectroscopy is the major limiting factor for its application to elucidate structure and dynamics in solids. In the solid state, nuclear spin hyperpolarization methods based on microwave-induced dynamic nuclear polarization (DNP) provide a versatile platform to enhance the bulk NMR signal of many different sample formulations, leading to significant sensitivity improvements. Here we show that 1H NMR hyperpolarization can also be generated in solids at high magnetic fields by optical irradiation of the sample. We achieved this by exploiting a donor-chromophore-acceptor molecule with an excited state electron-electron interaction similar to the nuclear Larmor frequency, enabling solid-state 1H photochemically induced DNP (photo-CIDNP) at high magnetic fields. Through hyperpolarization relay, we obtained bulk NMR signal enhancements εH by factors of ∼100 at both 9.4 and 21.1 T for the 1H signal of o-terphenyl in magic angle spinning (MAS) NMR experiments at 100 K. These findings open a pathway toward a general light-induced hyperpolarization approach for dye-sensitized high-field NMR in solids.

9.
J Phys Chem Lett ; 15(20): 5488-5494, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38748557

RESUMO

Solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) is a nuclear magnetic resonance spectroscopy technique in which nuclear spin hyperpolarization is generated upon optical irradiation of an appropriate donor-acceptor system. Until now, solid-state photo-CIDNP at high magnetic fields has been observed only in photosynthetic reaction centers and flavoproteins. In the present work, we show that the effect is not limited to such biomolecular samples, and solid-state 13C photo-CIDNP can be observed at 9.4 T under magic angle spinning using a frozen solution of a synthetic molecular system dissolved in an organic solvent. Signal enhancements for the source molecule larger than a factor of 2300 are obtained. In addition, we show that bulk 13C hyperpolarization of the solvent can be generated via spontaneous 13C-13C spin diffusion at natural abundance.

10.
J Am Chem Soc ; 146(18): 12587-12594, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38685488

RESUMO

Triphenylphosphine (PPh3) is a ubiquitous ligand in organometallic chemistry that has been shown to give enhanced 31P NMR signals at high magnetic field via a scalar-dominated Overhauser effect dynamic nuclear polarization (OE DNP). However, PPh3 can only be polarized via DNP in the free form, while the coordinated form is DNP-inactive. Here, we demonstrate the possibility of enhancing the 31P NMR signals of coordinated PPh3 in metal complexes in solution at room temperature by combining Overhauser effect DNP and chemical exchange between the free and coordinated PPh3 forms. With this method, we successfully obtain 31P DNP enhancements of up to 2 orders of magnitude for the PPh3 ligands in Rh(I), Ru(II), Pd(II), and Pt(II) complexes, and we show that the DNP enhancements can be used to determine the activation energy of the ligand exchange reaction.

11.
J Am Chem Soc ; 146(14): 9554-9563, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38548624

RESUMO

Lanthanides are versatile modulators of optoelectronic properties owing to their narrow optical emission spectra across the visible and near-infrared range. Their use in metal halide perovskites (MHPs) has recently gained prominence, although their fate in these materials has not yet been established at the atomic level. We use cesium-133 solid-state NMR to establish the speciation of all nonradioactive lanthanide ions (La3+, Ce3+, Pr3+, Nd3+, Sm3+, Sm2+, Eu3+, Eu2+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) in microcrystalline CsPbCl3. Our results show that all lanthanides incorporate into the perovskite structure of CsPbCl3 regardless of their oxidation state (+2, +3).

12.
Angew Chem Int Ed Engl ; 63(13): e202314856, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305510

RESUMO

Bandgap-tuneable mixed-halide 3D perovskites are of interest for multi-junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed-halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed-halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra. In particular, it has been suggested that there is a preference for occupation of the distinct axial and equatorial halide sites in mixed-halide 2D perovskites. 207 Pb NMR can be used to probe the atomic-scale structure of lead-halide materials, but although the isotropic 207 Pb shift is sensitive to halide stoichiometry, it cannot distinguish configurational isomers. Here, we use 2D isotropic-anisotropic correlation 207 Pb NMR and relativistic DFT calculations to distinguish the [PbX6 ] configurations in mixed iodide-bromide 3D FAPb(Br1-x Ix )3 perovskites and 2D BA2 Pb(Br1-x Ix )4 perovskites based on formamidinium (FA+ ) and butylammonium (BA+ ), respectively. We find that iodide preferentially occupies the axial site in BA-based 2D perovskites, which may explain the suppressed halide mobility.

13.
J Magn Reson ; 360: 107645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401477

RESUMO

Dynamic nuclear polarization (DNP) combined with high magnetic fields and fast magic angle spinning (MAS) has opened up a new avenue for the application of exceptionally sensitive 1H NMR detection schemes to study protonated solids. Recently, it has been shown that DNP experiments at fast MAS rates lead to slower spin diffusion and hence reduced DNP enhancements for impregnated materials. However, DNP enhancements alone do not determine the overall sensitivity of a NMR experiment. Here we measure the overall sensitivity of one-dimensional 1H detected relayed DNP experiments as a function of the MAS rate in the 20-60 kHz regime using 0.7 mm diameter rotors at 21.2 T. Although faster MAS rates are detrimental for the DNP enhancement on the target material, due to slower spin diffusion, we find that with increasing spinning rates the gain in sensitivity due to 1H line-narrowing and the folding-in of sideband intensity compensates a large part of the loss of overall hyperpolarization. We find that sensitivity depends on the atomic site in the molecule, and is maximised at between 40 and 50 kHz MAS for the sample of L-histidine.HCl·H2O studied here. There is a 10-20 % difference in sensitivity between the optimum MAS rate and the fastest rate currently accessible (60 kHz).

14.
Angew Chem Int Ed Engl ; 63(9): e202317337, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193258

RESUMO

We evaluate the overall sensitivity gains provided by a series of eighteen nitroxide biradicals for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and 100 K, including eight new biradicals. We find that in the best performing group the factors contributing to the overall sensitivity gains, namely the DNP enhancement, the build-up time, and the contribution factor, often compete with each other leading to very similar overall sensitivity across a range of biradicals. NaphPol and HydroPol are found to provide the best overall sensitivity factors, in organic and aqueous solvents respectively. One of the new biradicals, AMUPolCbm, provides high sensitivity for all three solvent formulations measured here, and can be considered to be a "universal" polarizing agent.

15.
Chimia (Aarau) ; 77(4): 212-216, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38047798

RESUMO

Magic angle spinning (MAS) in 1H NMR has allowed progress from featureless spectra in static samples to linewidths of a few hundreds of Hertz for powdered solids at the fastest spinning rates available today (100-150 kHz). While this is a remarkable improvement, this level of resolution is still limiting to the widespread use of 1H NMR for complex systems. This review will discuss two recent alternative strategies that have significantly improved 1H resolution, when combined with fast MAS. The first is based on anti-z-COSY, a 2D experiment originally used for J decoupling in liquids, which removes residual broadening due to splittings caused by imperfect coherent averaging of MAS. The second strategy is to obtain pure isotropic proton (PIP) spectra in solids, by parametrically mapping any residual broadening due to imperfect averaging into a second dimension of a multidimensional correlation spectrum.

16.
Mol Pharm ; 20(11): 5682-5689, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782000

RESUMO

Protein-based drugs are becoming increasingly important, but there are challenges associated with their formulation (for example, formulating stable inhalable aerosols while maintaining the proper long-term stability of the protein). Determining the morphology of multicomponent, protein-based drug formulations is particularly challenging. Here, we use dynamic nuclear polarization (DNP) solid-state NMR spectroscopy to determine the hierarchy of components within spray-dried particles containing protein, trehalose, leucine, and trileucine. DNP NMR was applied to these formulations to assess the localization of the components within the particles. We found a consistent scheme, where trehalose and the protein are co-located within the same phase in the core of the particles and leucine and trileucine are distributed in separate phases at the surface of the particles. The description of the hierarchy of the organic components determined by DNP NMR enables the rationalization of the performance of the formulation.


Assuntos
Excipientes , Trealose , Leucina/química , Trealose/química , Excipientes/química , Aerossóis/química , Espectroscopia de Ressonância Magnética , Pós/química , Administração por Inalação , Tamanho da Partícula
17.
J Magn Reson ; 355: 107557, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37776831

RESUMO

The role of 1H solid-state NMR in structure elucidation of solids is becoming more preponderant, particularly as faster magic-angle spinning rates (MAS) become available which improve 1H detected assignment strategies. However, current 1H spectral resolution is still relatively poor, with linewidths of typically a few hundred Hz, even at the fastest rates available today. Here we detail and assess the factors limiting proton linewidths and line shapes in MAS experiments with five different samples, exemplifying the different sources of broadening that affect the residual linewidth. We disentangle the different contributions through one- and two-dimensional experiments: by using dilution to identify the contribution of ABMS; by using extensive deuteration to identify the dipolar contributions; and by using variable MAS rates to determine the ratio between homogeneous and inhomogeneous components. We find that the overall widths and the nature of the different contributions to the linewidths can vary very considerably. While we find that faster spinning always yields narrower lines and longer coherence lifetimes, we also find that for some resonances the dipolar contribution is no longer dominant at 100 kHz MAS. When the inhomogeneous sources of broadening, such as ABMS and chemical shift disorder, are dominant, two-dimensional 1H-1H correlation experiments yield better resolution for assignment. Particularly the extraction of the antidiagonal of a 2D peak will remove any correlated inhomogeneous broadening, giving substantially narrower 1H linewidths.

18.
Nat Commun ; 14(1): 5138, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612269

RESUMO

Structure determination of amorphous materials remains challenging, owing to the disorder inherent to these materials. Nuclear magnetic resonance (NMR) powder crystallography is a powerful method to determine the structure of molecular solids, but disorder leads to a high degree of overlap between measured signals, and prevents the unambiguous identification of a single modeled periodic structure as representative of the whole material. Here, we determine the atomic-level ensemble structure of the amorphous form of the drug AZD4625 by combining solid-state NMR experiments with molecular dynamics (MD) simulations and machine-learned chemical shifts. By considering the combined shifts of all 1H and 13C atomic sites in the molecule, we determine the structure of the amorphous form by identifying an ensemble of local molecular environments that are in agreement with experiment. We then extract and analyze preferred conformations and intermolecular interactions in the amorphous sample in terms of the stabilization of the amorphous form of the drug.

19.
J Am Chem Soc ; 145(29): 16109-16117, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440302

RESUMO

Structure determination of molecular solids through NMR crystallography relies on the generation of a comprehensive set of candidate crystal structures and on the comparison of chemical shifts computed for those candidates with experimental values. Exploring the polymorph landscape of molecular solids requires extensive computational power, which leads to a significant bottleneck in the generation of the set of candidate crystals by crystal structure prediction (CSP) protocols. Here, we use a database of crystal structures with associated chemical shifts to construct three-dimensional interaction maps in molecular crystals directly derived from a molecular structure and its associated set of experimentally measured chemical shifts. We show how the maps obtained can be used to identify structural constraints for accelerating CSP protocols and to evaluate the likelihood of candidate crystal structures without requiring DFT-level chemical shift computations.

20.
J Magn Reson ; 353: 107509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331306

RESUMO

Dynamic nuclear polarisation (DNP) of solids doped with high-spin metal ions, such as Gd3+, is a useful strategy to enhance the nuclear magnetic resonance (NMR) sensitivity for these samples. Spin diffusion can relay polarisation throughout a sample, which is most effective for dense 1H networks, while the efficiency of DNP using Gd3+ depends on the symmetry of the metal site. Here, we investigate cubic In(OH)3 as a high-symmetry, proton-containing material for endogenous Gd DNP. A 1H enhancement of up to 9 is demonstrated and harnessed to measure the 17O spectrum at natural abundance. The enhancement is interpreted in terms of clustering of the Gd3+ dopants and the local reduction in symmetry of the metal site induced by proton disorder, as demonstrated by quadrupolar 115In NMR. This is the first example of 1H DNP using Gd3+ dopants in an inorganic solid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA