Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401078

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that controls progression through the cell cycle by orchestrating the timely proteolysis of mitotic cyclins and other cell cycle regulatory proteins. Although structures of multiple human APC/C complexes have been extensively studied over the past decade, the Saccharomyces cerevisiae APC/C has been less extensively investigated. Here, we describe medium resolution structures of three S. cerevisiae APC/C complexes: unphosphorylated apo-APC/C and the ternary APC/CCDH1-substrate complex, and phosphorylated apo-APC/C. Whereas the overall architectures of human and S. cerevisiae APC/C are conserved, as well as the mechanism of CDH1 inhibition by CDK-phosphorylation, specific variations exist, including striking differences in the mechanism of coactivator-mediated stimulation of E2 binding, and the activation of APC/CCDC20 by phosphorylation. In contrast to human APC/C in which coactivator induces a conformational change of the catalytic module APC2:APC11 to allow E2 binding, in S. cerevisiae apo-APC/C the catalytic module is already positioned to bind E2. Furthermore, we find no evidence of a phospho-regulatable auto-inhibitory segment of APC1, that in the unphosphorylated human APC/C, sterically blocks the CDC20C-box binding site of APC8. Thus, although the functions of APC/C are conserved from S. cerevisiae to humans, molecular details relating to their regulatory mechanisms differ.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Microscopia Crioeletrônica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Humanos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fosforilação , Conformação Proteica
2.
Nat Methods ; 21(7): 1340-1348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918604

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Microscopia Crioeletrônica/métodos , Ligantes , SARS-CoV-2 , COVID-19/virologia , Escherichia coli , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Conformação Proteica , Reprodutibilidade dos Testes
3.
J Struct Biol ; 216(2): 108093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615726

RESUMO

Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.


Assuntos
Aminoidrolases , Microscopia Crioeletrônica , Nitrilas , Multimerização Proteica , Rhodococcus , Aminoidrolases/química , Aminoidrolases/metabolismo , Aminoidrolases/ultraestrutura , Microscopia Crioeletrônica/métodos , Rhodococcus/enzimologia , Nitrilas/química , Nitrilas/metabolismo , Especificidade por Substrato , Modelos Moleculares , Domínio Catalítico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Catálise
4.
Res Sq ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38343795

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

5.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259835

RESUMO

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Assuntos
Proteínas , Software , Proteínas/química , Cristalografia por Raios X , Substâncias Macromoleculares
6.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 727-745, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34076588

RESUMO

Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all.


Assuntos
Modelos Estruturais , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligantes , SARS-CoV-2/química , Proteínas Virais/química
7.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 712-726, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34076587

RESUMO

In this contribution, the current protocols for modelling covalent linkages within the CCP4 suite are considered. The mechanism used for modelling covalent linkages is reviewed: the use of dictionaries for describing changes to stereochemistry as a result of the covalent linkage and the application of link-annotation records to structural models to ensure the correct treatment of individual instances of covalent linkages. Previously, linkage descriptions were lacking in quality compared with those of contemporary component dictionaries. Consequently, AceDRG has been adapted for the generation of link dictionaries of the same quality as for individual components. The approach adopted by AceDRG for the generation of link dictionaries is outlined, which includes associated modifications to the linked components. A number of tools to facilitate the practical modelling of covalent linkages available within the CCP4 suite are described, including a new restraint-dictionary accumulator, the Make Covalent Link tool and AceDRG interface in Coot, the 3D graphical editor JLigand and the mechanisms for dealing with covalent linkages in the CCP4i2 and CCP4 Cloud environments. These integrated solutions streamline and ease the covalent-linkage modelling workflow, seamlessly transferring relevant information between programs. Current recommended practice is elucidated by means of instructive practical examples. By summarizing the different approaches to modelling linkages that are available within the CCP4 suite, limitations and potential pitfalls that may be encountered are highlighted in order to raise awareness, with the intention of improving the quality of future modelled covalent linkages in macromolecular complexes.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas/química , Software , Gráficos por Computador , Cristalografia por Raios X , Interface Usuário-Computador
8.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 19-27, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404522

RESUMO

Biological macromolecules have complex three-dimensional shapes that are experimentally examined using X-ray crystallography and electron cryo-microscopy. Interpreting the data that these methods yield involves building 3D atomic models. With almost every data set, some portion of the time put into creating these models must be spent manually modifying the model in order to make it consistent with the data; this is difficult and time-consuming, in part because the data are `blurry' in three dimensions. This paper describes the design and assessment of CootVR (available at http://hamishtodd1.github.io/cvr), a prototype computer program for performing this task in virtual reality, allowing structural biologists to build molecular models into cryo-EM and crystallographic data using their hands. CootVR was timed against Coot for a very specific model-building task, and was found to give an order-of-magnitude speedup for this task. A from-scratch model build using CootVR was also attempted; from this experience it is concluded that currently CootVR does not give a speedup over Coot overall.


Assuntos
Imageamento Tridimensional/métodos , Substâncias Macromoleculares/química , Modelos Moleculares , Software , Realidade Virtual , Cristalografia por Raios X
9.
Protein Sci ; 29(4): 1069-1078, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31730249

RESUMO

Coot is a tool widely used for model building, refinement, and validation of macromolecular structures. It has been extensively used for crystallography and, more recently, improvements have been introduced to aid in cryo-EM model building and refinement, as cryo-EM structures with resolution ranging 2.5-4 A are now routinely available. Model building into these maps can be time-consuming and requires experience in both biochemistry and building into low-resolution maps. To simplify and expedite the model building task, and minimize the needed expertise, new tools are being added in Coot. Some examples include morphing, Geman-McClure restraints, full-chain refinement, and Fourier-model based residue-type-specific Ramachandran restraints. Here, we present the current state-of-the-art in Coot usage.


Assuntos
Microscopia Crioeletrônica , Cristalografia por Raios X , Substâncias Macromoleculares/química , Modelos Moleculares , Software
10.
Acta Crystallogr D Struct Biol ; 75(Pt 4): 416-425, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988258

RESUMO

N-Glycosylation is one of the most common post-translational modifications and is implicated in, for example, protein folding and interaction with ligands and receptors. N-Glycosylation trees are complex structures of linked carbohydrate residues attached to asparagine residues. While carbohydrates are typically modeled in protein structures, they are often incomplete or have the wrong chemistry. Here, new tools are presented to automatically rebuild existing glycosylation trees, to extend them where possible, and to add new glycosylation trees if they are missing from the model. The method has been incorporated in the PDB-REDO pipeline and has been applied to build or rebuild 16 452 carbohydrate residues in 11 651 glycosylation trees in 4498 structure models, and is also available from the PDB-REDO web server. With better modeling of N-glycosylation, the biological function of this important modification can be better and more easily understood.


Assuntos
Configuração de Carboidratos , Bases de Dados de Proteínas , Glicoproteínas/química , Polissacarídeos/química , Conformação Proteica , Sequência de Carboidratos , Cristalografia por Raios X/métodos , Humanos , Modelos Moleculares
11.
Acta Crystallogr D Struct Biol ; 74(Pt 4): 256-263, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29652253

RESUMO

Coot is a graphics application that is used to build or manipulate macromolecular models; its particular forte is manipulation of the model at the residue level. The model-building tools of Coot have been combined and extended to assist or automate the building of N-linked glycans. The model is built by the addition of monosaccharides, placed by variation of internal coordinates. The subsequent model is refined by real-space refinement, which is stabilized with modified and additional restraints. It is hoped that these enhanced building tools will help to reduce building errors of N-linked glycans and improve our knowledge of the structures of glycoproteins.


Assuntos
Glicoproteínas/química , Modelos Moleculares , Software , Cristalografia por Raios X , Polissacarídeos/química
12.
Science ; 358(6366): 1056-1059, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29074584

RESUMO

Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four ß propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.


Assuntos
Processamento de Terminações 3' de RNA , RNA Polimerase II/química , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/química , Microscopia Crioeletrônica , Polinucleotídeo Adenililtransferase/metabolismo , Conformação Proteica , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Poliadenilação e Clivagem de mRNA/ultraestrutura
13.
Acta Crystallogr D Struct Biol ; 73(Pt 9): 729-737, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28876236

RESUMO

In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.


Assuntos
Proteínas/química , Software , Difração de Raios X/métodos , Algoritmos , Artefatos , Bases de Dados de Proteínas , Gelo/análise , Modelos Moleculares , Conformação Proteica
14.
Acta Crystallogr D Struct Biol ; 73(Pt 3): 203-210, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28291755

RESUMO

Coot is a molecular-graphics program primarily aimed at model building using X-ray data. Recently, tools for the manipulation and representation of ligands have been introduced. Here, these new tools for ligand validation and comparison are described. Ligands in the wwPDB have been scored by density-fit, distortion and atom-clash metrics. The distributions of these scores can be used to assess the relative merits of the particular ligand in the protein-ligand complex of interest by means of `sliders' akin to those now available for each accession code on the wwPDB websites.


Assuntos
Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Software , Sítios de Ligação , Gráficos por Computador , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo
16.
Acta Crystallogr D Struct Biol ; 73(Pt 2): 103-111, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177306

RESUMO

A freely available small-molecule structure database, the Crystallography Open Database (COD), is used for the extraction of molecular-geometry information on small-molecule compounds. The results are used for the generation of new ligand descriptions, which are subsequently used by macromolecular model-building and structure-refinement software. To increase the reliability of the derived data, and therefore the new ligand descriptions, the entries from this database were subjected to very strict validation. The selection criteria made sure that the crystal structures used to derive atom types, bond and angle classes are of sufficiently high quality. Any suspicious entries at a crystal or molecular level were removed from further consideration. The selection criteria included (i) the resolution of the data used for refinement (entries solved at 0.84 Šresolution or higher) and (ii) the structure-solution method (structures must be from a single-crystal experiment and all atoms of generated molecules must have full occupancies), as well as basic sanity checks such as (iii) consistency between the valences and the number of connections between atoms, (iv) acceptable bond-length deviations from the expected values and (v) detection of atomic collisions. The derived atom types and bond classes were then validated using high-order moment-based statistical techniques. The results of the statistical analyses were fed back to fine-tune the atom typing. The developed procedure was repeated four times, resulting in fine-grained atom typing, bond and angle classes. The procedure will be repeated in the future as and when new entries are deposited in the COD. The whole procedure can also be applied to any source of small-molecule structures, including the Cambridge Structural Database and the ZINC database.


Assuntos
Cristalografia por Raios X , Conformação Molecular , Bibliotecas de Moléculas Pequenas/química , Bases de Dados Factuais , Ligantes , Modelos Moleculares , Software
17.
Acta Crystallogr D Struct Biol ; 73(Pt 2): 112-122, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177307

RESUMO

The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the `ideal' bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files.


Assuntos
Bibliotecas de Moléculas Pequenas/química , Software , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados Factuais , Deinococcus/química , Deinococcus/metabolismo , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Ligantes , Modelos Moleculares , Conformação Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Estereoisomerismo
18.
Structure ; 24(4): 502-508, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27050687

RESUMO

Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Cristalografia por Raios X , Curadoria de Dados , Guias como Assunto , Ligantes , Modelos Moleculares , Conformação Proteica
19.
Methods Mol Biol ; 1273: 229-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753715

RESUMO

The frequency of glycosylated protein 3D structures in the Protein Data Bank (PDB) is significantly lower than the proportion of glycoproteins in nature, and if glycan 3D structures are present, then they often exhibit a large degree of errors. There are various reasons for this, one of which is a comparably low support of carbohydrates in software tools for 3D structure determination and validation. This chapter illustrates the current features that assist crystallographers with handling glycans during 3D structure determination in Coot and CNS and with validation of the results.


Assuntos
Carboidratos/química , Biologia Computacional/métodos , Software , Bases de Dados de Proteínas , Modelos Moleculares , Reprodutibilidade dos Testes
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 136-53, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615868

RESUMO

The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.


Assuntos
Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química , Cristalografia por Raios X , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA