Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(42): 425504, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32748804

RESUMO

Evidently, microfluidic devices are proven to be one of the most effective and powerful tools for manipulating, preparing, functionalizing and producing new generation nanoparticles and nanocomposites. Their benefits include low solution/sample feeding, excellent handling of reagents, exceptional control of size and composition, compactness, easy to process with rapid thermal management and cost-effectiveness. Such advantages have led to the endorsement of nano-microscale fabrication methods to develop highly controllable and reproducible minuscule devices. This work aims to design and develop a microscale-based temperature control device with added features like low-cost, portability, miniaturized, easy-to-use, minuscule reaction volume and point-of-source system for the synthesis of nanoparticles. The device incorporates many features such as real-time data access with a GUI interface with a smartphone open-source app for Bluetooth and Database cloud for an Internet of Things module. The portable thermal device is then calibrated and is capable of achieving a maximum temperature of 250 °C in 25 min. The fabricated device is harnessed for the synthesis of manganese oxide (MnO2) nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques like SEM and XPS to analyze the surface morphology. To test the applicability, as a proof of concept, the synthesized nanoparticles were tested for electrochemical sensing of hydrogen peroxide and dopamine. Overall, the portable device can be utilized for carrying out diverse temperature-controlled reactions in a microfluidic system in a user-friendly and automated manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA