Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Regen Ther ; 27: 251-258, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38596823

RESUMO

Skin injuries are a global healthcare problem. Chronic ulcers do not heal in a timely fashion, so it is essential to help the body with skin repair. There are some treatments that have been applied to chronic ulcers. One of these treatments is growth factor (GF) therapy. Platelet-rich plasma (PRP) and Platelet-poor plasma (PPP) are two types of plasma derivatives containing many GFs important for wound healing. Several works have reported their application in wound healing and tissue regeneration. The use of autologous PRP is now an adequate alternative in regenerative medicine. It was also demonstrated that PPP is a hemostatic agent for wounds. This review has studied the latest clinical studies, which have applied PRP and PPP to patients with chronic wounds.

2.
Int J Biol Macromol ; 266(Pt 2): 131051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556223

RESUMO

In situ-forming hydrogels that possess the ability to be injected in a less invasive manner and mimic the biochemical composition and microarchitecture of the native cartilage extracellular matrix are desired for cartilage tissue engineering. Besides, gelation time and stiffness of the hydrogel are two interdependent factors that affect cells' distribution and fate and hence need to be optimized. This study presented a bioinspired in situ-forming hydrogel composite of hyaluronic acid (HA), chondroitin sulfate (CS), and collagen short nanofiber (CSNF). HA and CS were functionalized with aldehyde and amine groups to form a gel through a Schiff-base reaction. CSNF was fabricated via electrospinning, followed by fragmentation by ultrasonics. Gelation time (11-360 s) and compressive modulus (1.4-16.2 kPa) were obtained by varying the concentrations of CS, HA, CSNFs, and CSNFs length. The biodegradability and biocompatibility of the hydrogels with varying gelation and stiffness were also assessed in vitro and in vivo. At three weeks, the assessment of hydrogels' chondrogenic differentiation also yields varying levels of chondrogenic differentiation. The subcutaneous implantation of the hydrogels in a mouse model indicated no severe inflammation. Results demonstrated that the injectable CS/HA@CSNF hydrogel was a promising hydrogel for tissue engineering and cartilage regeneration.


Assuntos
Sulfatos de Condroitina , Colágeno , Ácido Hialurônico , Hidrogéis , Nanocompostos , Nanofibras , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Nanofibras/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Colágeno/química , Nanocompostos/química , Engenharia Tecidual/métodos , Cartilagem/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
3.
Tissue Cell ; 87: 102318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377632

RESUMO

Diabetes is a global problem that threatens human health. Cell therapy methods using stem cells, and tissue engineering of pancreatic islets as new therapeutic approaches have increased the chances of successful diabetes treatment. In this study, to differentiate Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) into insulin-producing cells (IPCs) with improved maturity, and function, platelet-rich plasma (PRP)-Polyvinylpyrrolidone (PVP)-Polycaprolactone (PCL)/PCL scaffold was designed. The two-dimensional (2D) control group included cell culture without differentiation medium, and the experimental groups included 2D, and three-dimensional (3D) groups with pancreatic beta cell differentiation medium. WJ-MSCs-derived IPCs on PRP-PVP-PCL/PCL scaffold took round cluster morphology, the typical pancreatic islets morphology. Real-time PCR, immunocytochemistry, and flowcytometry data showed a significant increase in pancreatic marker genes in WJ-MSCs-derived IPCs on the PRP-PVP-PCL/PCL scaffold compared to the 2D-experimental group. Also, using the ELISA assay, a significant increase in the secretion of insulin, and C-peptide was measured in the WJ-MSCs-derived IPCs of the 3D-experimental group compared to the 2D experimental group, the highest amount of insulin (38 µlU/ml), and C-peptide (43 pmol/l) secretion was in the 3D experimental group, and in response to 25 mM glucose solution, which indicated a significant improvement in the functional level of the WJ-MSCs-derived IPCs in the 3D group. The results showed that the PRP-PVP-PCL/PCL scaffold can provide an appropriate microenvironment for the engineering of pancreatic islets, and the generation of IPCs.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Poliésteres , Povidona/análogos & derivados , Geleia de Wharton , Humanos , Peptídeo C , Diferenciação Celular , Células Cultivadas
4.
Heliyon ; 10(1): e23478, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226283

RESUMO

The use of passive immunotherapy, either as plasma or purified antibodies, has been recommended to treat the emerging infectious diseases (EIDs) in the absence of alternative therapeutic options. Here, we compare the neutralization potency of various passive immunotherapy approaches designed to provide the immediate neutralizing antibodies as potential EID treatments. To prepare human plasma and purified IgG, we screened and classified individuals into healthy, convalescent, and vaccinated groups against SARS-CoV-2 using qRT-PCR, anti-nucleocapsid, and anti-spike tests. Moreover, we prepared purified IgG from non-immunized and hyperimmunized rabbits against SARS-CoV-2 spike protein. Human and rabbit samples were used to evaluate the neutralization potency by sVNT. All vaccinated and convalescent human plasma and purified IgG groups, as well as purified IgG from hyperimmunized rabbits, had significantly greater levels of spike-specific antibodies than the control groups. Furthermore, when compared to the other groups, the purified IgG from hyperimmunized rabbits exhibited superior levels of neutralizing antibodies, with an IC50 value of 2.08 µg/ml. Additionally, our results indicated a statistically significant positive correlation between the neutralization IC50 value and the positive endpoint concentration of spike-specific antibodies. In conclusion, our study revealed that purified IgG from hyperimmunized animals has greater neutralization potency than other passive immunotherapy methods and may be the most suitable treatment of critically ill patients in EIDs.

5.
Cell Commun Signal ; 22(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167105

RESUMO

BACKGROUND: Breast cancer remains a primary global health concern due to its limited treatment options, frequent disease recurrence, and high rates of morbidity and mortality. Thereby, there is a need for more effective treatment approaches. The proposal suggests that the combination of targeted therapy with other antitumoral agents could potentially address drug resistance. In this study, we examined the antitumoral effect of combining metformin, an antidiabetic drug, with targeted therapies, including tamoxifen for estrogen receptor-positive (MCF-7), trastuzumab for HER2-positive (SKBR-3), and antibody against ROR1 receptor for triple-negative breast cancer (MDA-MB-231). METHODS: Once the expression of relevant receptors on each cell line was confirmed and appropriate drug concentrations were selected through cytotoxicity assays, the antitumor effects of both monotherapy and combination therapy on colony formation, migration, invasion were assessed in in vitro as well as tumor area and metastatic potential in ex ovo Chick chorioallantoic membrane (CAM) models. RESULTS: The results exhibited the enhanced effects of tamoxifen when combined with targeted therapy. This combination effectively inhibited cell growth, colony formation, migration, and invasion in vitro. Additionally, it significantly reduced tumor size and metastatic potential in an ex ovo CAM model. CONCLUSIONS: The findings indicate that a favorable strategy to enhance the efficacy of breast cancer treatment would be to combine metformin with targeted therapies.


Assuntos
Neoplasias da Mama , Metformina , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Metformina/farmacologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Tamoxifeno/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Proliferação de Células
6.
BMC Oral Health ; 23(1): 1014, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110929

RESUMO

BACKGROUND: Recurrent aphthous stomatitis has a complex and inflammatory origin. Among the great variety of medications it is increasingly common to use herbal medicines due to the adverse side effects of chemical medications. Considering the anti-inflammatory properties of cinnamaldehyde and the lack of studies related to the effectiveness of its nano form; This study investigates the effect of cinnamaldehyde and nano cinnamaldehyde on the healing rate of recurrent aphthous stomatitis lesions. METHODS: In a laboratory experiment, cinnamaldehyde was converted into niosomal nanoparticles. The niosome vesicles diameter and polydispersity index were measured at 25°C using a dynamic light scattering (DLS) Mastersizer 2000 (Malvern Panalytical technologies: UK) and Zetasizer Nano ZS system (Malvern Instruments Worcestershire: UK). After characterizing these particles, the (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) [XTT] assay was used to assess the toxicity of cinnamaldehyde and nano cinnamaldehyde on gingival fibroblast (HGF) and macrophage (THP-1) cells. By determining the release of TNF-α, IL-6, and TGF-ß cytokines using ELISA kits, the level of tissue repair and anti-inflammatory capabilities of these two substances were evaluated. RESULTS: The size and loading rate of the cinnamaldehyde nanoparticles were established after its creation. The optimized nanovesicle exhibited the following characteristics: particle size of 228.75 ± 2.38 nm, PDI of 0.244 ± 0.01, the zeta potential of -10.87 ± 1.09 mV and the drug encapsulation percentage of 66.72 ± 3.93%. PDIs range was between 0.242-0.274. The zeta potential values at 25°C were from -2.67 to -12.9 mV. The results of the XTT test demonstrated that nano cinnamaldehyde exhibited dose-dependent toxicity effects. Moreover, nano cinnamaldehyde released more TGF-ß and had better reparative effects when taken at lower concentrations than cinnamaldehyde. CONCLUSION: Nano cinnamaldehyde and cinnamaldehyde are effective in repairing tissue when used in non-toxic amounts. After confirmation in animal models, it is envisaged that these substances can be utilized to treat recurrent aphthous stomatitis.


Assuntos
Estomatite Aftosa , Animais , Macrófagos , Anti-Inflamatórios/farmacologia , Fibroblastos , Fator de Crescimento Transformador beta/farmacologia
7.
Mater Today Bio ; 20: 100614, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37008830

RESUMO

Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.

8.
Genes (Basel) ; 14(4)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37107668

RESUMO

The treatment of full-thickness skin wounds is a problem in the clinical setting, as they do not heal spontaneously. Extensive pain at the donor site and a lack of skin grafts limit autogenic and allogeneic skin graft availability. We evaluated fetal bovine acellular dermal matrix (FADM) in combination with human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) to heal full-thickness skin wounds. FADM was prepared from a 6-month-old trauma-aborted fetus. WJ-MSCs were derived from a human umbilical cord and seeded on the FADM. Rat models of full-thickness wounds were created and divided into three groups: control (no treatment), FADM, and FADM-WJMSCs groups. Wound treatment was evaluated microscopically and histologically on days 7, 14, and 21 post-surgery. The prepared FADM was porous and decellularized with a normal range of residual DNA. WJ-MSCs were seeded and proliferated on FADM effectively. The highest wound closure rate was observed in the FADM-WJMSC group on days 7 and 14 post-surgery. Furthermore, this group had fewer inflammatory cells than other groups. Finally, in this study, we observed that, without using the differential cell culture media of fibroblasts, the xenogeneic hWJSCs in combination with FADM could promote an increased rate of full-thickness skin wound closure with less inflammation.


Assuntos
Derme Acelular , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Bovinos , Humanos , Ratos , Lactente , Cicatrização , Cordão Umbilical
9.
Acta Histochem ; 125(3): 152025, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37058856

RESUMO

Regarding their reversible damage of insulin-producing cells (IPCs) and the inefficiency of treatment methods for type 1 diabetes mellitus (T1DM), scientists decided to produce IPCs from an unlimited source of cells. But the production of these cells is constantly faced with problems such as low differentiation efficiency in cell therapy and regenerative medicine. This study provided an ideal differentiation medium enriched with plasma-rich platelet (PRP) delivery to produce IPCs from menstrual blood-derived stem cells (MenSCs). We compared them with and without PRP differentiation medium. MenSCs were then cultured in two experimental groups: with/without PRP differentiation medium and a control group (undifferentiated MenSCs). After 18 days, differentiated cells were analyzed for expression of pancreatic gene markers by real-time PCR. Immunocytochemical staining was used to detect the presence of insulin and Pdx-1 in the differentiated cells, and insulin and C-peptide secretion response to glucose were tested by ELISA. Finally, the morphology of differentiated cells was examined by an inverted microscope. In vitro studies showed that MenSCs differentiated in the PRP differentiation medium had strong properties of IPCs such as pancreatic islet-like structure. The expression of pancreatic markers at both RNA and protein levels showed that the differentiation efficiency was higher in the PRP differentiation medium. In both experimental groups, the differentiated cells were functional and secreted C-peptide and insulin on glucose stimulation, but the secretion of C-peptide and insulin in the PRP group was higher than those cultured in the without PRP differentiation medium. Our findings showed that using of PRP enriched differentiation medium can promote the differentiation of MenSCs into IPCs compared to the without PRP culture group. Therefore, the use of PRP into differentiation media can be proposed as a new approach to producing IPCs from MenSCs and used in cell-based therapies for T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Plasma Rico em Plaquetas , Humanos , Glucose/farmacologia , Glucose/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Peptídeo C/metabolismo , Diferenciação Celular , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco
10.
Life Sci ; 320: 121525, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841470

RESUMO

AIMS: Vaccination has played an important role in protecting against death and the severity of COVID-19. The recombinant protein vaccine platform has a long track record of safety and efficacy. Here, we fused the SARS-CoV-2 spike S1 subunit to the Fc region of IgG and investigated immunogenicity, reactivity to human vaccinated sera, and neutralizing activity as a candidate protein vaccine. MATERIALS AND METHOD: We evaluated the immunogenicity of CHO-expressed S1-Fc fusion protein and tag-free S1 protein in rabbits via the production of S1-specific polyclonal antibodies. We subsequently compared the neutralizing activities of sera from immunized rabbits and human-vaccinated individuals using a surrogate Virus Neutralization Test (sVNT). KEY FINDINGS: The results indicate that S1-specific polyclonal antibodies were induced in all groups; however, antibody levels were higher in rabbits immunized with S1-Fc fusion protein than tag-free S1 protein. Moreover, the reactivity of human vaccinated sera against S1-Fc fusion protein was significantly higher than tag-free S1 protein. Lastly, the results of the virus-neutralizing activity revealed that vaccination with S1-Fc fusion protein induced the highest level of neutralizing antibody response against SARS-CoV-2. SIGNIFICANCE: Our results demonstrate that the S1 protein accompanied by the Fc fragment significantly enhances the immunogenicity and neutralizing responses against SARS-CoV-2. It is hoped that this platform can be used for human vaccination.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Coelhos , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , Fragmentos Fc das Imunoglobulinas/genética , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos Neutralizantes , Proteínas Recombinantes
11.
Bratisl Lek Listy ; 124(4): 267-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598319

RESUMO

BACKGROUND: Cholinergic neurons, a type of neurons found in central nervous system, play a vital role in muscle movement and activities. Cholinergic neurons degeneration is the main pathological symptom of neurodegenerative diseases. Among a variety of stem cells, iPSCs have emerged as a promising candidate for transplantation to improve the repair of neuronal lesion sites. However, the establishment of an appropriate induction method to yield large numbers of cholinergic neurons has yet to be determined. Here, we studied the differentiation potential of iPSCs to generate cholinergic neurons by developing a new optimized differentiation protocol. METHODS: The iPSCs were harvested on 6-well matrigel-coated plate and incubated with serum­free DMEM/F12 with 2 % B27 supplement, 20 ng/ml the basic fibroblast growth factor and 20 ng/ml epidermal growth factor for 48 hours. Then, the pre-induced cells were treated in neuronal induction medium supplemented with all-trans retinoic acid, sonic hedgehog, 100 ng/ml glial-derived neurotrophic factor and 200 ng/ml brain-derived neurotrophic factor for 7 days. Cell viability during induction stages was tested by MTT assay. Differentiated cells were evaluated with crystal violet staining, immunocytochemistry and real­time PCR. RESULTS: Our results showed that the survival rate of iPSCs leveled out and was similar to that in the control group following the differentiation process. Immunochemistry results revealed that the expression of ChAT was observed in cells in both pre­induction and induction stages with a significantly higher expression level at the induction stage as compared to the pre-induction stage. However, none of these markers was expressed in the iPSCs. Cresyl violet staining confirmed the neuronal phenotype of differentiated cells. The induction group significantly expressed the higher levels of Islet1, Olig2 and HB9, whereas pluripotency markers including those of Oct4 and Nestin plunged. CONCLUSION: Our investigation represents a highly efficient protocol for iPSCs differentiation toward cholinergic neurons which could be used for further preclinical transplantation studies (Tab. 1, Fig. 5, Ref. 35). Text in PDF www.elis.sk Keywords: induced pluripotent stem cells, cholinergic neurons, neurotrophic factors, induction protocol, preclinical transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Hedgehog/metabolismo , Diferenciação Celular , Neurônios Colinérgicos
12.
Curr Stem Cell Res Ther ; 18(1): 35-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35473518

RESUMO

In December 2019, a betacoronavirus was isolated from pneumonia cases in China and rapidly turned into a pandemic of COVID-19. The virus is an enveloped positive-sense ssRNA and causes a severe respiratory syndrome along with a cytokine storm, which is the main cause of most complications. Therefore, treatments that can effectively control the inflammatory reactions are necessary. Mesenchymal Stromal Cells and their EVs are well-known for their immunomodulatory effects, inflammation reduction, and regenerative potentials. These effects are exerted through paracrine secretion of various factors. Their EVs also transport various molecules such as microRNAs to other cells and affect recipient cells' behavior. Scores of research and clinical trials have indicated the therapeutic potential of EVs in various diseases. EVs also seem to be a promising approach for severe COVID-19 treatment. EVs have also been used to develop vaccines since EVs are biocompatible nanoparticles that can be easily isolated and engineered. In this review, we have focused on the use of Mesenchymal Stromal Cells and their EVs for the treatment of COVID-19, their therapeutic capabilities, and vaccine development.


Assuntos
COVID-19 , Células-Tronco Mesenquimais , Humanos , RNA Viral , Tratamento Farmacológico da COVID-19 , COVID-19/terapia , SARS-CoV-2 , Inflamação
13.
Artif Organs ; 47(2): 302-316, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36161305

RESUMO

BACKGROUND: Healing the full-thickness skin wounds has remained a challenge. One of the most frequently used grafts for skin regeneration is xenogeneic acellular dermal matrices (ADMs), including bovine ADMs. This study investigated the effect of the source animal age, enzymatic versus non-enzymatic decellularization protocols, and gamma irradiation versus ethylene oxide (EO) sterilization on the scaffold. METHODS: ADMs were prepared using the dermises of fetal bovine or calf skins. All groups were decellularized through chemical and mechanical methods, unless T-FADM samples, in which an enzymatic step was added to the decellularization protocol. All groups were sterilized with ethylene oxide (EO), except G-FADM which was sterilized using gamma irradiation. The scaffolds were characterized through scanning electron microscopy, differential scanning calorimetry, tensile test, MTT assay, DNA quantification, and real-time PCR. The performance of the ADMs in wound treatment was also evaluated macroscopically and histologically. RESULTS: All ADMs were effectively decellularized. In comparison to FADM (EO-sterilized fetal ADM), morphological, and mechanical properties of G-FADM, T-FADM, and CADM (EOsterilized calf ADM) were changed to different extents. In addition, the CADM and G-FADM were thermally more stable than the FADM and T-FADM. Although all ADMs were noncytotoxic, the wounds of the FADM, T-FADM, and G-FADM groups were contracted to almost 30.0% of the original area on day 7, significantly faster than the CADM (17.5% ± 1.7) and control (12.2% ± 1.59) groups. However, by day 21, all ADMs were mostly closed except for the untreated group (60.1 ± 1.8). CONCLUSION: Altogether, fetal source and EO-sterilized samples performed better than calf source and gamma-sterilized samples unless in some mechanical properties. There was no added value in using enzymatic treatment during the decellularization process. Our results suggest that the age, decellularization, and sterilization methods of animal source should be selected based on the clinical requirements.


Assuntos
Derme Acelular , Animais , Bovinos , Óxido de Etileno , Cicatrização , Transplante de Pele/métodos , Esterilização
14.
Artif Organs ; 47(3): 502-511, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36287200

RESUMO

BACKGROUND: In the realm of diabetes treatment, various strategies have been tried, including islet transplantation and common drug therapies, but the limitations of these procedures and lack of responsive to the high number of patients have prompted researchers to develop a new method. In recent decades, the use of stem cells and three-dimonsional (3D) scaffold to produce insulin-secreting cells is one of the most promising new approaches. Meanwhile, human-induced pluripotent stem cells (iPSCs) propose due to advantages such as autologousness and high pluripotency in cell therapy. This study aimed to evaluate the differentiation of iPSCs into pancreatic islet insuli-producing cells (IPCs) on Silk/PES (polyethersulfone) nanofibers as a 3D scaffold and compare it with a two-dimonsional (2D) cultured group. METHODS: Investigating the functional, morphological, molecular, and cellular characteristics of differentiated iPSCs on control cultures (without differentiation medium), 2D and 3D were measured by various methods such as electron microscopy, Q-PCR, immunofluorescence, western blot, and ELISA. RESULTS: This investigation revealed that differentiated cells on the 3D Silk/PES scaffold expressed pancreatic specific-markers such as insulin and pdx1 at higher levels than the control and 2D groups, with a significant difference between the two groups. All results of Q-PCR, immunocytochemistry, and western blot showed that IPCs in the silk/PES 3D group was more efficient than in the 2D group. In the face of these cases, the release of insulin and C-peptide in response to several concentrations of glucose in the 3D group was significantly higher than in the 2D culture. CONCLUSION: Finally, our findings displayed that optimized Silk/PES 3D scaffolds can enhance the differentiation of IPCs from iPSCs compared to the 2D culture group.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Nanofibras , Humanos , Alicerces Teciduais/química , Nanofibras/química , Glucose/farmacologia , Diferenciação Celular/fisiologia , Insulina , Seda
15.
Artif Organs ; 46(8): 1491-1503, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35403747

RESUMO

BACKGROUND: Using a different source of stem cells to compensate for the lost beta cells is a promising way to cure diabetic patients. Besides, the best efficiency of insulin-producing cells (IPCs) will appear when we culture them in an environment similar to inside the body. Hence, three-dimensional (3D) culture ameliorates the differentiation of diverse kinds of stem cells into IPCs compared to those differentiated in two-dimensional (2D) culture. In this study, we aim to create an ideal differentiation environment by using PCL/Fish gelatin nanofibrous scaffolds to differentiate Wharton's jelly-derived mesenchymal cells (WJ-MSCs) to IPCs and compare them with a 2D cultured group. METHODS: The evaluation of cellular, molecular, and functional properties of differentiated cells on the 3D and 2D cultures was investigated by several assays such as electron microscopy, quantitative PCR, immunochemistry, western blotting, and ELISA. RESULTS: The in vitro studies showed that WJ-MSCs differentiated in the 3D culture have strong properties of IPCs such as islet-like cells. The expression of pancreatic-specific genes at both RNA and protein levels showed higher differentiation efficacy of 3D culture. Besides, the results of the ELISA tests demonstrate that in both groups the differentiated cells are functional and secreted C-peptide and insulin in glucose stimulation, but the secretion of C-peptide and insulin in the 3D culture group was higher than those cultured in 2D groups. CONCLUSION: Our findings showed the use of PCL/Fish gelatin nanofibrous scaffolds with optimized differentiation protocols can promote the differentiation of IPCs from WJ-MSCs compared to the 2D culture group.


Assuntos
Nanofibras , Geleia de Wharton , Animais , Peptídeo C/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Gelatina/metabolismo , Nanofibras/química , Polímeros , Geleia de Wharton/metabolismo
16.
Front Bioeng Biotechnol ; 10: 805969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284421

RESUMO

In recent decades, bone tissue engineering has had an effective role in introducing orthopedic implants. In this regard, polymeric scaffolds reinforced with bioactive nanomaterials can offer great potential in tissue engineering implants for replacing bone loss in patients. In this study, the thermally induced phase separation method was used to fabricate three-dimensional highly porous scaffolds made of layered double hydroxide (LDH)/polycaprolactone (PCL) nanocomposites with varied LDH contents ranging from 0.1 wt.% to 10 wt.%. The Phase identification, morphology, and elemental composition were studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. Interconnected pores ranging from 5 to 150 µm were detected in all samples. The results revealed that the inclusion of LDH to PCL scaffold reinforced mechanical strength and compressive modulus increased from 0.6418 to 1.3251 for the pure PCL and PCL + LDH (1 Wt.%) scaffolds, respectively. Also, thermal stability, degradation rate, and biomineralization especially in comparison with the pure PCL were enhanced. Adhesion, viability, and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) seeded on PCL + LDH scaffolds were improved as compared to the pure PCL. Furthermore, the addition of LDH resulted in the increased mineral deposition as well as expression of ALP and RUNX2 osteogenic genes in terms of differentiation. All in all, our findings revealed that PCL + LDH (1 Wt.%) scaffold might be an ideal choice for 3D scaffold design in bone tissue engineering approaches.

17.
Cell Biochem Funct ; 40(2): 189-198, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35118692

RESUMO

Among the many polymers introduced for bone tissue engineering, natural polymers have more advantages due to their high biocompatibility and biodegradability, despite their low mechanical properties. Herein, gelatin nanofibers with and without magnesium oxide (MgO) and graphene oxide (GO) nanoparticles were fabricated by electrospinning. The fabricated gelatin and gelatin/GO/MgO nanofibers were examined using scanning electron microscopy, protein adsorption, cell attachment and viability assays. The results revealed that biological behaviours of the gelatin nanofibers significantly improved while incorporated with MgO and GO nanoparticles. In the following, osteosupportive capacity of the fabricated scaffolds was investigated by Alizarin-red staining, alkaline phosphatase activity, and calcium content, and bone-related gene and protein assays. The results revealed that the highest osteogenic differentiation potential of human-induced pluripotent stem cells (hiPSCs) was detected while these cells were cultured on the gelatin/GO/MgO nanofibers. However, these makers in the hiPSCs cultured on the gelatin nanofibers were also significantly increased in comparison with the cells cultured on the tissue culture plates as a control. In conclusion, the results revealed that predictable disadvantages in gelatin nanofibers can be greatly improved by the addition of MgO and GO nanoparticles, and the resulting composite scaffold could be a potential candidate for use in bone tissue engineering.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanofibras , Osteogênese , Diferenciação Celular , Proliferação de Células , Gelatina , Grafite , Humanos , Óxido de Magnésio , Alicerces Teciduais
18.
Gene ; 809: 146005, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673210

RESUMO

Stem cells from umbilical cord blood (UCB) are able to proliferate and differentiate into various somatic cell types. Thereby, they are considered as one of the attractive stem cell sources in tissue engineering and regenerative medicine. However, the limited number of hematopoietic CD 133+ stem cells in UCB restricted the clinical application of such stem cells. This study was aimed to expand CD 133+ stem cells derived from UCB on a 3D silk scaffold. UCB133+ stem cells were extracted using Magnetic cell sorting (MACS) and characterized by flow cytometry. Isolated cells were seeded on a fabricated electrospun silk scaffold and cultured for 7 days. The real-time PCR, cell counting, colony-forming assay, and MTT assay were performed to evaluate the expansion and homing of stem cells. The results showed a higher expression of CXCR4 gene, the number of cultured stem cells, and colony-forming units in the 3D silk scaffold group after 7 days when compared to the tissue culture plate. Moreover, higher viability and proliferation of stem cells were seen in cells cultured on silk scaffold. It seems electrospun silk scaffold could be used as a suitable substrate for UCB CD 133+ stem cell expansion.


Assuntos
Antígeno AC133/metabolismo , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Nanofibras , Técnicas de Cultura de Células/métodos , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Hematopoéticas/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Nanofibras/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Seda/química , Alicerces Teciduais/química
19.
Mater Sci Eng C Mater Biol Appl ; 131: 112489, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857275

RESUMO

Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Nanogéis , Polímeros , Porosidade
20.
Exp Cell Res ; 405(2): 112667, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107273

RESUMO

This study aimed toengineer a pancreatic tissue. Intact rat pancreases were successfully decellularized, and were reseeded with human-induced pluripotent stem cells using different 2D and 3D culture growth factors. The differentiation process was assessed for the presence of a pancreas-like tissue. The histology and SEM analysis revealed cell attachment in all samples, except for the Exp4, and the Flow-cytometry provided 87% viability for the differentiated cells. In Exp1, PDX1 with the positive expression of 2.87±0.06 was dramatically higher than Exp2 with a 2.44±0.06 reaction. NGN3-reactions were 8±0.1 and 6.6±0.2 in Exp1 and Exp2 at P < 0.05, respectively. C-peptide with the expression of 7.5±0.7 in Exp3 was almost equal to that in Exp1 and Exp2. Glucagon (5.1±1) and PDX1 (3.2±0.82) in Exp3 indicated no significant difference. The significant upregulations of pancreatic endocrine markers (PDX1 and NGN3), and the cell-specific glucose transporter (GLUT2) were observed in the differentiated IPCs in the 3D culture of Exp2 after 21 days. The highest insulin and C-peptide concentrations were observed in Exp2. In Exp3, insulin secretion in response to high glucose and 10 mM arginine was 42.43 ±6.34 µU/ml. A decellularized pancreas in the presence of hiPSCs and growth factors could be efficiently used as a natural scaffold.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células Secretoras de Insulina/citologia , Pâncreas/citologia , Animais , Ilhotas Pancreáticas/citologia , Carioferinas/metabolismo , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação para Cima/fisiologia , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA