Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 105(1): 22-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098600

RESUMO

Plants experience temperature fluctuations during the course of the daily cycle, and although stem growth responds rapidly to these changes we largely ignore whether there is a short-term memory of previous conditions. Here we show that nighttime temperatures affect the growth of the hypocotyl of Arabidopsis thaliana seedlings not only during the night but also during the subsequent photoperiod. Active phytochrome B (phyB) represses nighttime growth and warm temperatures reduce active phyB via thermal reversion. The function of PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1) is to stabilise active phyB in nuclear bodies but, surprisingly, warmth reduces PCH1 gene expression and PCH1 stability. When phyB was active at the beginning of the night, warm night temperatures enhanced the levels of nuclear phyB and reduced hypocotyl growth rate during the following day. However, when end-of-day far-red light minimised phyB activity, warm night temperatures reduced the levels of nuclear phyB and enhanced the hypocotyl growth rate during the following day. This complex growth pattern was absent in the phyB mutant. We propose that temperature-induced changes in the levels of PCH1 and in the size of the physiologically relevant nuclear pool of phyB amplify the impact of phyB-mediated temperature sensing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metalochaperonas/metabolismo , Fitocromo B/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Metalochaperonas/fisiologia , Fotoperíodo , Fitocromo B/fisiologia , Plântula/metabolismo , Plântula/fisiologia , Temperatura
2.
Mol Plant ; 13(3): 499-514, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32061894

RESUMO

PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) and PCH1-LIKE (PCHL) were shown to directly bind to phytochrome B (phyB) and suppress phyB thermal reversion, resulting in plants with dramatically enhanced light sensitivity. Here, we show that PCH1 and PCHL also positively regulate various light responses, including seed germination, hypocotyl gravitropism, and chlorophyll biosynthesis, by physically interacting with PHYTOCHROME INTERACTING FACTOR 1 (PIF1) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). PCH1 and PCHL interact with PIF1 both in the dark and light, and regulate PIF1 abundance. Moreover, PCH1 and PCHL facilitate the physical interaction between phyB and PIF1 in vivo to promote the light-induced degradation of PIF1. PCH1 and PCHL also inhibit the DNA-binding ability of PIF1 to negatively regulate the expressions of PIF1 target genes. In addition, PCH1 and PCHL interact with COP1 and undergo degradation through the 26S proteasome pathway in the dark. Consistently, pch1 suppresses cop1 phenotype in darkness. Collectively, our study reveals a novel mechanism by which PCH1 and PCHL regulate diverse light responses not only by stabilizing phyB Pfr form but also by directly interacting with PIF1 and COP1, providing a molecular understanding of the control of hypocotyl growth by these proteins.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas F-Box/metabolismo , Desenvolvimento Vegetal/efeitos da radiação , Proteólise/efeitos da radiação , Fatores de Transcrição/metabolismo , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Escuridão , Desenvolvimento Vegetal/genética , Ligação Proteica/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo
3.
Plant Physiol ; 180(1): 323-341, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760637

RESUMO

Chloroplast biogenesis is indispensable for proper plant development and environmental acclimation. In a screen for mutants affected in photosynthesis, we identified the protein phosphatase7-like (pp7l) mutant, which displayed delayed chloroplast development in cotyledons and young leaves. PP7L, PP7, and PP7-long constitute a subfamily of phosphoprotein phosphatases. PP7 is thought to transduce a blue-light signal perceived by crys and phy a that induces expression of SIGMA FACTOR5 (SIG5). We observed that, like PP7, PP7L was predominantly localized to the nucleus in Arabidopsis (Arabidopsis thaliana), and the pp7l phenotype was similar to that of the sig6 mutant. However, SIG6 expression was unaltered in pp7l mutants. Instead, loss of PP7L compromised translation and ribosomal RNA (rRNA) maturation in chloroplasts, pointing to a distinct mechanism influencing chloroplast development. Promoters of genes deregulated in pp7l-1 were enriched in PHYTOCHROME-INTERACTING FACTOR (PIF)-binding motifs and the transcriptome of pp7l-1 resembled those of pif and CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) signalosome complex (csn) mutants. However, pif and csn mutants, as well as cop1, cryptochromes (cry)1 cry2, and phytochromes (phy)A phyB mutants, do not share the pp7l photosynthesis phenotype. PhyB protein levels were elevated in pp7l mutants, but phyB overexpression plants did not resemble pp7l These results indicate that PP7L operates through a different pathway and that the control of greening and photosystem biogenesis can be separated. The lack of PP7L increased susceptibility to salt and high-light stress, whereas PP7L overexpression conferred resistance to high-light stress. Strikingly, PP7L was specifically recruited to Brassicales for the regulation of chloroplast development. This study adds another player involved in chloroplast biogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cloroplastos/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Fosfoproteínas Fosfatases/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fator sigma/genética
4.
Nat Commun ; 8(1): 2221, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263319

RESUMO

Phytochrome B (phyB) is the primary red light photoreceptor in plants, and regulates both growth and development. The relative levels of phyB in the active state are determined by the light conditions, such as direct sunlight or shade, but are also affected by light-independent dark reversion. Dark reversion is a temperature-dependent thermal relaxation process, by which phyB reverts from the active to the inactive state. Here, we show that the homologous phyB-binding proteins PCH1 and PCHL suppress phyB dark reversion, resulting in plants with dramatically enhanced light sensitivity. Moreover, far-red and blue light upregulate the expression of PCH1 and PCHL in a phyB independent manner, thereby increasing the response to red light perceived by phyB. PCH1 and PCHL therefore provide a node for the molecular integration of different light qualities by regulation of phyB dark reversion, allowing plants to adapt growth and development to the ambient environment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas F-Box/metabolismo , Luz , Fitocromo B , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas , Temperatura , Fatores de Transcrição/metabolismo
5.
Plant Cell ; 27(1): 189-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25627066

RESUMO

Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets positive regulators of photomorphogenic growth for degradation by the proteasome. Phytochromes inhibit the COP1/SPA complex, leading to the accumulation of transcription factors promoting photomorphogenesis; yet, the mechanism by which they inactivate COP1/SPA is still unknown. Here, we show that light-activated phytochrome A (phyA) and phytochrome B (phyB) interact with SPA1 and other SPA proteins. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy analyses show that SPAs and phytochromes colocalize and interact in nuclear bodies. Furthermore, light-activated phyA and phyB disrupt the interaction between COP1 and SPAs, resulting in reorganization of the COP1/SPA complex in planta. The light-induced stabilization of HFR1, a photomorphogenic factor targeted for degradation by COP1/SPA, correlates temporally with the accumulation of phyA in the nucleus and localization of phyA to nuclear bodies. Overall, these data provide a molecular mechanism for the inactivation of the COP1/SPA complex by phyA- and phyB-mediated light perception.


Assuntos
Arabidopsis/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Proteínas de Arabidopsis/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA