RESUMO
X-ray scattering experiments using Free Electron Lasers (XFELs) are a powerful tool to determine the molecular structure and function of unknown samples (such as COVID-19 viral proteins). XFEL experiments are a challenge to computing in two ways: i) due to the high cost of running XFELs, a fast turnaround time from data acquisition to data analysis is essential to make informed decisions on experimental protocols; ii) data collection rates are growing exponentially, requiring new scalable algorithms. Here we report our experiences analyzing data from two experiments at the Linac Coherent Light Source (LCLS) during September 2020. Raw data were analyzed on NERSC's Cori XC40 system, using the Superfacility paradigm: our workflow automatically moves raw data between LCLS and NERSC, where it is analyzed using the software package CCTBX. We achieved real time data analysis with a turnaround time from data acquisition to full molecular reconstruction in as little as 10 min -- sufficient time for the experiment's operators to make informed decisions. By hosting the data analysis on Cori, and by automating LCLS-NERSC interoperability, we achieved a data analysis rate which matches the data acquisition rate. Completing data analysis with 10 mins is a first for XFEL experiments and an important milestone if we are to keep up with data collection trends.
RESUMO
Biominerals such as seashells, coral skeletons, bone, and tooth enamel are optically anisotropic crystalline materials with unique nanoscale and microscale organization that translates into exceptional macroscopic mechanical properties, providing inspiration for engineering new and superior biomimetic structures. Using Seriatopora aculeata coral skeleton as a model, here, we experimentally demonstrate X-ray linear dichroic ptychography and map the c-axis orientations of the aragonite (CaCO3) crystals. Linear dichroic phase imaging at the oxygen K-edge energy shows strong polarization-dependent contrast and reveals the presence of both narrow (<35°) and wide (>35°) c-axis angular spread in the coral samples. These X-ray ptychography results are corroborated by four-dimensional (4D) scanning transmission electron microscopy (STEM) on the same samples. Evidence of co-oriented, but disconnected, corallite subdomains indicates jagged crystal boundaries consistent with formation by amorphous nanoparticle attachment. We expect that the combination of X-ray linear dichroic ptychography and 4D STEM could be an important multimodal tool to study nano-crystallites, interfaces, nucleation, and mineral growth of optically anisotropic materials at multiple length scales.
Assuntos
Antozoários/química , Biomimética , Biomineralização , Cristalinas/química , Animais , Anisotropia , Antozoários/ultraestrutura , Carbonato de Cálcio/química , Cristalinas/ultraestrutura , Microscopia Eletrônica de Transmissão e Varredura , Minerais/química , Radiografia , Engenharia Tecidual , Raios XRESUMO
The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy. A novel scanning mechanism, coupled to advanced x-ray detectors, a high-brightness x-ray source, and high-performance computing for analysis provide a revolutionary step forward in terms of imaging speed and resolution. We present x-ray microscopy with 8-nm full-period spatial resolution and use this capability in conjunction with operando sample environments and cryogenic imaging, which are now routinely available. Our multimodal approach will find wide use across many fields of science and facilitate correlative analysis of materials with other types of probes.
RESUMO
Multimodal microscopy that combines complementary nanoscale imaging techniques is critical for extracting comprehensive chemical, structural, and functional information, particularly for heterogeneous samples. X-ray microscopy can achieve high-resolution imaging of bulk materials with chemical, magnetic, electronic, and bond orientation contrast, while electron microscopy provides atomic-scale spatial resolution with quantitative elemental composition. Here, we combine x-ray ptychography and scanning transmission x-ray spectromicroscopy with three-dimensional energy-dispersive spectroscopy and electron tomography to perform structural and chemical mapping of an Allende meteorite particle with 15-nm spatial resolution. We use textural and quantitative elemental information to infer the mineral composition and discuss potential processes that occurred before or after accretion. We anticipate that correlative x-ray and electron microscopy overcome the limitations of individual imaging modalities and open up a route to future multiscale nondestructive microscopies of complex functional materials and biological systems.
RESUMO
The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events, such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.
RESUMO
Propagation-based imaging or inline holography in combination with computed tomography (holotomography) is a versatile tool to access a sample's three-dimensional (3D) micro or nano structure. However, the phase retrieval step needed prior to tomographic reconstruction can be challenging especially for strongly absorbing and refracting samples. Near-field ptychography is a recently developed phase imaging method that has been proven to overcome this hurdle in projection data. In this work we extend near-field ptychography to three dimensions and we show that, in combination with tomography, it can access the nano structure of a solid oxide fuel cell (SOFC). The quality of the resulting tomographic data and the structural properties of the anode extracted from this volume were compared to previous results obtained with holotomography. This work highlights the potential of 3D near-field ptychography for reliable and detailed investigations of samples at the nanometer scale, with important applications in materials and life sciences among others.
RESUMO
Inline holography is a common phase-contrast imaging method which uses free-space propagation to encode the phase signal into measured intensities. However, quantitative retrieval of the sample's image remains challenging, imposing constraints on the nature of the sample or on the propagation distance. Here, we present a way of simultaneously retrieving the sample's complex-valued transmission function and the incident illumination function from near-field diffraction patterns. The procedure relies on the measurement diversity created by lateral translations of the sample with respect to a structured illumination. The reconstruction approach, in essence identical to that employed in ptychography, is applied to hard X-ray synchrotron measurements and to simulations. Compared to other inline holography techniques, we expect near-field ptychography to reduce reconstruction artefacts by factoring out wavefront imperfections and relaxing constraints on the sample's scattering properties, thus ultimately improving the robustness of propagation-based X-ray phase tomography.