Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 4(6): 683-692, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760867

RESUMO

Phospholipid levels are influenced by peripheral metabolism. Within the central nervous system, synaptic phospholipids regulate glutamatergic transmission and cortical excitability. Whether changes in peripheral metabolism affect brain lipid levels and cortical excitability remains unknown. Here, we show that levels of lysophosphatidic acid (LPA) species in the blood and cerebrospinal fluid are elevated after overnight fasting and lead to higher cortical excitability. LPA-related cortical excitability increases fasting-induced hyperphagia, and is decreased following inhibition of LPA synthesis. Mice expressing a human mutation (Prg-1R346T) leading to higher synaptic lipid-mediated cortical excitability display increased fasting-induced hyperphagia. Accordingly, human subjects with this mutation have higher body mass index and prevalence of type 2 diabetes. We further show that the effects of LPA following fasting are under the control of hypothalamic agouti-related peptide (AgRP) neurons. Depletion of AgRP-expressing cells in adult mice decreases fasting-induced elevation of circulating LPAs, as well as cortical excitability, while blunting hyperphagia. These findings reveal a direct influence of circulating LPAs under the control of hypothalamic AgRP neurons on cortical excitability, unmasking an alternative non-neuronal route by which the hypothalamus can exert a robust impact on the cortex and thereby affect food intake.


Assuntos
Diabetes Mellitus Tipo 2 , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Comportamento Alimentar/fisiologia , Humanos , Hiperfagia/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
2.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587822

RESUMO

Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα-deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα-deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα-deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.


Assuntos
Interleucina-4 , Receptores de Interleucina-4 , Animais , Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptores de Interleucina-4/metabolismo , Transdução de Sinais
3.
Sci Transl Med ; 14(641): eabk0135, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442704

RESUMO

Stroke penumbra injury caused by excess glutamate is an important factor in determining stroke outcome; however, several therapeutic approaches aiming to rescue the penumbra have failed, likely due to unspecific targeting and persistent excitotoxicity, which continued far beyond the primary stroke event. Synaptic lipid signaling can modulate glutamatergic transmission via presynaptic lysophosphatidic acid (LPA) 2 receptors modulated by the LPA-synthesizing molecule autotaxin (ATX) present in astrocytic perisynaptic processes. Here, we detected long-lasting increases in brain ATX concentrations after experimental stroke. In humans, cerebrospinal fluid ATX concentration was increased up to 14 days after stroke. Using astrocyte-specific deletion and pharmacological inhibition of ATX at different time points after experimental stroke, we showed that inhibition of LPA-related cortical excitability improved stroke outcome. In transgenic mice and in individuals expressing a single-nucleotide polymorphism that increased LPA-related glutamatergic transmission, we found dysregulated synaptic LPA signaling and subsequent negative stroke outcome. Moreover, ATX inhibition in the animal model ameliorated stroke outcome, suggesting that this approach might have translational potential for improving the outcome after stroke.


Assuntos
Excitabilidade Cortical , Acidente Vascular Cerebral , Animais , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Transgênicos , Diester Fosfórico Hidrolases , Receptores de Ácidos Lisofosfatídicos , Acidente Vascular Cerebral/tratamento farmacológico
4.
Cell Mol Life Sci ; 78(3): 1029-1050, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32468095

RESUMO

Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2-/- mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2-/- mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2-/- mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2-/- mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2-/- were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2-/- phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better  performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.


Assuntos
Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Neurônios/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Envelhecimento , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Cromatografia Líquida de Alta Pressão , Giro Denteado/metabolismo , Análise Discriminante , Família de Proteínas EGF/deficiência , Família de Proteínas EGF/genética , Feminino , Fígado/metabolismo , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Componente Principal , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/deficiência , Receptores de Ácidos Lisofosfatídicos/genética , Espectrometria de Massas em Tandem
5.
Mol Psychiatry ; 25(11): 3108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30602735

RESUMO

Following the publication of this article the authors noted that Torfi Sigurdsson's name was misspelled. Instead of Sigrudsson it should be Sigurdsson. The PDF and HTML versions of the paper have been modified accordingly. The authors would like to apologise for this error and the inconvenience this may have caused.

6.
Mol Psychiatry ; 23(8): 1699-1710, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743582

RESUMO

Lysophosphatidic acid (LPA) is a synaptic phospholipid, which regulates cortical excitation/inhibition (E/I) balance and controls sensory information processing in mice and man. Altered synaptic LPA signaling was shown to be associated with psychiatric disorders. Here, we show that the LPA-synthesizing enzyme autotaxin (ATX) is expressed in the astrocytic compartment of excitatory synapses and modulates glutamatergic transmission. In astrocytes, ATX is sorted toward fine astrocytic processes and transported to excitatory but not inhibitory synapses. This ATX sorting, as well as the enzymatic activity of astrocyte-derived ATX are dynamically regulated by neuronal activity via astrocytic glutamate receptors. Pharmacological and genetic ATX inhibition both rescued schizophrenia-related hyperexcitability syndromes caused by altered bioactive lipid signaling in two genetic mouse models for psychiatric disorders. Interestingly, ATX inhibition did not affect naive animals. However, as our data suggested that pharmacological ATX inhibition is a general method to reverse cortical excitability, we applied ATX inhibition in a ketamine model of schizophrenia and rescued thereby the electrophysiological and behavioral schizophrenia-like phenotype. Our data show that astrocytic ATX is a novel modulator of glutamatergic transmission and that targeting ATX might be a versatile strategy for a novel drug therapy to treat cortical hyperexcitability in psychiatric disorders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Inibição Neural/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Sinapses/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Humanos , Ketamina , Lisofosfolipídeos/farmacologia , Transtornos Mentais/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Diester Fosfórico Hidrolases/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Psicotrópicos/farmacologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Cereb Cortex ; 27(1): 131-145, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909001

RESUMO

Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation.


Assuntos
Axônios/fisiologia , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/metabolismo , Redes e Vias Metabólicas/fisiologia , Crescimento Neuronal/fisiologia , Fosfolipídeos/metabolismo , Transmissão Sináptica/fisiologia , Animais , Axônios/ultraestrutura , Cálcio/metabolismo , Células Cultivadas , Camundongos
8.
Neuron ; 92(1): 126-142, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27641493

RESUMO

Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2-/- thalamus restored the aberrant cortical innervation. We identified radixin as a PRG-2 interaction partner and showed that radixin accumulation in growth cones and its LPA-dependent phosphorylation depend on its binding to specific regions within the C-terminal region of PRG-2. In vivo recordings and whisker-specific behavioral tests demonstrated sensory discrimination deficits in PRG-2-/- animals. Our data show that bioactive phospholipids and PRG-2 are critical for guiding thalamic axons to their proper cortical targets.


Assuntos
Orientação de Axônios/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas do Citoesqueleto/fisiologia , Lisofosfolipídeos/fisiologia , Proteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Tálamo/crescimento & desenvolvimento , Animais , Córtex Cerebral/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Discriminação Psicológica/fisiologia , Cones de Crescimento/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Fosforilação , Tálamo/metabolismo
9.
Dev Cell ; 38(3): 275-90, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27453502

RESUMO

Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/ß1-integrin activation. PRG-1 deficiency reduces spine numbers and ß1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of ß1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation.


Assuntos
Espinhas Dendríticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrina beta1/metabolismo , Lisofosfolipídeos/metabolismo , Plasticidade Neuronal/fisiologia , Proteína Fosfatase 2/metabolismo , Sinapses/fisiologia , Animais , Células Cultivadas , Espinhas Dendríticas/genética , Adesões Focais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/citologia , Hipocampo/metabolismo , Integrina beta1/genética , Potenciação de Longa Duração , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteína Fosfatase 2/genética , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA