RESUMO
Background: As our molecular understanding of pediatric central nervous system (CNS) tumors evolves, so too do diagnostic criteria, prognostic biomarkers, and clinical management decision making algorithms. Here, we explore the clinical utility of wide-breadth assays, including whole-exome sequencing (WES), RNA sequencing (RNA-seq), and methylation array profiling as an addition to more conventional diagnostic tools for pediatric CNS tumors. Methods: This study comprises an observational, prospective cohort followed at a single academic medical center over 3 years. Paired tumor and normal control specimens from 53 enrolled pediatric patients with CNS tumors underwent WES. A subset of cases also underwent RNA-seq (n = 28) and/or methylation array analysis (n = 27). Results: RNA-seq identified the driver and/or targetable fusions in 7/28 cases, including potentially targetable NTRK fusions, and uncovered possible rationalized treatment options based on outlier gene expression in 23/28 cases. Methylation profiling added diagnostic confidence (8/27 cases) or diagnostic subclassification endorsed by the WHO (10/27 cases). WES detected clinically pertinent tier 1 or tier 2 variants in 36/53 patients. Of these, 16/17 SNVs/INDELs and 10/19 copy number alterations would have been detected by current in-house conventional tests including targeted sequencing panels. Conclusions: Over a heterogeneous set of pediatric tumors, RNA-seq and methylation profiling frequently yielded clinically relevant information orthogonal to conventional methods while WES demonstrated clinically relevant added value primarily via copy number assessment. Longitudinal cohorts comparing targeted molecular pathology workup vs broader genomic approaches including therapeutic selection based on RNA expression data will be necessary to further evaluate the clinical benefits of these modalities in practice.
RESUMO
Primary clear cell renal cell carcinoma (ccRCC) has been previously characterized, but the genomic landscape of metastatic ccRCC is largely unexplored. Here, we performed whole exome sequencing (WES) in 68 samples from 44 patients with ccRCC, including 52 samples from a metastatic site. SETD2, PBRM1, APC and VHL were the most frequently mutated genes in the metastatic ccRCC cohort. RBM10 and FBXW7 were also among the 10 most frequently mutated genes in metastatic tissues. Recurrent somatic copy number variations (CNV) were observed at the previously identified regions 3p25, 9p21 and 14q25, but also at 6p21 (CDKN1A) and 13q14 (RB1). No statistically significant differences were found between samples from therapy-naïve and pretreated patients. Clonal evolution analyses with multiple samples from 13 patients suggested that early appearance of CNVs at 3p25, 9p21 and 14q25 may be associated with rapid clinical progression. Overall, the genomic landscapes of primary and metastatic ccRCC seem to share frequent CNVs at 3p25, 9p21 and 14q25. Future work will clarify the implication of RBM10 and FBXW7 mutations and 6p21 and 13q14 CNVs in metastatic ccRCC.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Variações do Número de Cópias de DNA/genética , Proteína 7 com Repetições F-Box-WD/genética , Genômica , Humanos , Neoplasias Renais/patologia , Mutação/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
The epichaperome is a new cancer target composed of hyperconnected networks of chaperome members that facilitate cell survival. Cancers with an altered chaperone configuration may be susceptible to epichaperome inhibitors. We developed a flow cytometry-based assay for evaluation and monitoring of epichaperome abundance at the single cell level, with the goal of prospectively identifying patients likely to respond to epichaperome inhibitors, to measure target engagement, and dependency during treatment. As proof of principle, we describe a patient with an unclassified myeloproliferative neoplasm harboring a novel PML-SYK fusion, who progressed to acute myeloid leukemia despite chemotherapy and allogeneic stem cell transplant. The leukemia was identified as having high epichaperome abundance. We obtained compassionate access to an investigational epichaperome inhibitor, PU-H71. After 16 doses, the patient achieved durable complete remission. These encouraging results suggest that further investigation of epichaperome inhibitors in patients with abundant baseline epichaperome levels is warranted.
Assuntos
Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Evolução Clonal/genética , Linfoma Folicular/diagnóstico , Linfoma Folicular/etiologia , Mutação , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Linfoma Folicular/metabolismo , Transdução de SinaisRESUMO
CONTEXT.: An increasing number of molecular laboratories are implementing next-generation sequencing platforms to identify clinically actionable and relevant genomic alterations for precision oncology. OBJECTIVE.: To describe the validation studies as per New York State-Department of Health (NYS-DOH) guidelines for the Oncomine Comprehensive Panel v2, which was originally tailored to the National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) trial. DESIGN.: Accuracy, precision, and reproducibility were investigated by using 130 DNA and 18 RNA samples from cytology cell blocks; formalin-fixed, paraffin-embedded tissues; and frozen samples. Analytic sensitivity and specificity were tested by using ATCC and HapMap cell lines. RESULTS.: High accuracy and precision/reproducibility were observed for single nucleotide variants and insertion/deletions. We also share our experience in the detection of gene fusions and copy number alterations from an amplicon-based sequencing platform. After sequencing analysis, variant annotation and report generation were performed by using the institutional knowledgebase. CONCLUSIONS.: This study serves as an example for validating a comprehensive targeted next-generation sequencing assay with both DNASeq and RNASeq components for NYS-DOH.
Assuntos
Variações do Número de Cópias de DNA/genética , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Medicina de Precisão , Fusão Gênica , Humanos , Mutagênese Insercional , Neoplasias/diagnóstico , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA , Deleção de SequênciaRESUMO
BACKGROUND: Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer that may arise de novo or in patients previously treated with hormonal therapies for prostate adenocarcinoma as a mechanism of resistance. Despite being important to recognise, the clinical features of NEPC are poorly defined and could help guide when to perform a biopsy to look for NEPC histologic transformation. METHODS: We reviewed baseline, treatment and outcome data of 87 patients with metastatic prostate cancer and tumour biopsy confirming NEPC histology. Forty-seven (54.0%) NEPC cases presented de novo, and 40 (46.0%) were therapy-related (t-NEPC). Thirty-six (41.4%) were classified as pure small-cell carcinoma, and 51 (58.6%) demonstrated mixed features with both small-cell carcinoma and adenocarcinoma present. Genomic data were available for 47 patients. RESULTS: The median age at time of NEPC was 68.1 years, median prostate-specific antigen (PSA) was 1.20 ng/ml (0.14 ng/mL small-cell carcinoma, 1.55 ng/mL mixed carcinoma) and sites of metastases included bone (72.6%), lymph node (47.0%), and viscera (65.5%). Median time from adenocarcinoma to t-NEPC diagnosis was 39.7 months (range, 24.5-93.8) with a median of two lines of prior systemic therapy. Platinum chemotherapy was used to treat 57.5% of patients, with a median progression-free survival of 3.9 months. Small-cell carcinoma was associated with worse overall survival (OS) than mixed histology (8.9 months from NEPC diagnosis versus 26.1 months, P < 0.001). Median OS of de novo NEPC was shorter than that of t-NEPC (16.8 months from prostate cancer diagnosis versus 53.5 months, P = 0.043). An average PSA rise per month of ≤0.7 ng/ml before t-NEPC; elevated lactate dehydrogenase levels, RB1 and TP53 loss and liver metastases were poor prognostic features. CONCLUSIONS: We describe the clinical features of a cohort of patients with NEPC. These characteristics may inform future diagnostic strategies.