Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(1): 112-121, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175007

RESUMO

Broadband coherent anti-Stokes Raman scattering (BCARS) is a powerful spectroscopy method combining high signal intensity with spectral sensitivity, enabling rapid imaging of heterogeneous samples in biomedical research and, more recently, in crystalline materials. However, BCARS encounters spectral distortion due to a setup-dependent non-resonant background (NRB). This study assesses BCARS reproducibility through a round robin experiment using two distinct BCARS setups and crystalline materials with varying structural complexity, including diamond, 6H-SiC, KDP, and KTP. The analysis compares setup-specific NRB correction procedures, detected and NRB-removed spectra, and mode assignment. We determine the influence of BCARS setup parameters like pump wavelength, pulse width, and detection geometry and provide a practical guide for optimizing BCARS setups for solid-state applications.

2.
ACS Nano ; 17(19): 19313-19322, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738305

RESUMO

The terahertz (THz) frequency range is key to studying collective excitations in many crystals and organic molecules. However, due to the large wavelength of THz radiation, the local probing of these excitations in smaller crystalline structures or few-molecule arrangements requires sophisticated methods to confine THz light down to the nanometer length scale, as well as to manipulate such a confined radiation. For this purpose, in recent years, taking advantage of hyperbolic phonon polaritons (HPhPs) in highly anisotropic van der Waals (vdW) materials has emerged as a promising approach, offering a multitude of manipulation options, such as control over the wavefront shape and propagation direction. Here, we demonstrate the THz application of twist-angle-induced HPhP manipulation, designing the propagation of confined THz radiation between 8.39 and 8.98 THz in the vdW material α-molybdenum trioxide (α-MoO3), hence extending twistoptics to this intriguing frequency range. Our images, recorded by near-field optical microscopy, show the frequency- and twist-angle-dependent changes between hyperbolic and elliptic polariton propagation, revealing a polaritonic transition at THz frequencies. As a result, we are able to allocate canalization (highly collimated propagation) of confined THz radiation by carefully adjusting these two parameters, i.e. frequency and twist angle. Specifically, we report polariton canalization in α-MoO3 at 8.67 THz for a twist angle of 50°. Our results demonstrate the precise control and manipulation of confined collective excitations at THz frequencies, particularly offering possibilities for nanophotonic applications.

3.
Nat Commun ; 14(1): 5240, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640711

RESUMO

Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3 has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal ß-Ga2O3 (bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

4.
Nano Lett ; 23(9): 3913-3920, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126430

RESUMO

Graphene nano-optics at terahertz (THz) frequencies (ν) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For ν < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.

5.
Nano Lett ; 23(8): 3532-3539, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37018631

RESUMO

Ferromagnetic La0.7Sr0.3Mn1-xRuxO3 epitaxial multilayers with controlled variation of the Ru/Mn content were synthesized to engineer canted magnetic anisotropy and variable exchange interactions, and to explore the possibility of generating a Dzyaloshinskii-Moriya interaction. The ultimate aim of the multilayer design is to provide the conditions for the formation of domains with nontrivial magnetic topology in an oxide thin film system. Employing magnetic force microscopy and Lorentz transmission electron microscopy in varying perpendicular magnetic fields, magnetic stripe domains separated by Néel-type domain walls as well as Néel skyrmions smaller than 100 nm in diameter were observed. These findings are consistent with micromagnetic modeling, taking into account a sizable Dzyaloshinskii-Moriya interaction arising from the inversion symmetry breaking and possibly from strain effects in the multilayer system.

6.
Nano Lett ; 23(3): 795-803, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36668991

RESUMO

Ferroelectric domain boundaries are quasi-two-dimensional functional interfaces with high prospects for nanoelectronic applications. Despite their reduced dimensionality, they can exhibit complex non-Ising polarization configurations and unexpected physical properties. Here, the impact of the three-dimensional (3D) curvature on the polarization profile of nominally uncharged 180° domain walls in LiNbO3 is studied using second-harmonic generation microscopy and 3D polarimetry analysis. Correlations between the domain-wall curvature and the variation of its internal polarization unfold in the form of modulations of the Néel-like character, which we attribute to the flexoelectric effect. While the Néel-like character originates mainly from the tilting of the domain wall, the internal polarization adjusts its orientation due to the synergetic upshot of dipolar and monopolar bound charges and their variation with the 3D curvature. Our results show that curved interfaces in solid crystals may offer a rich playground for tailoring nanoscale polar states.

7.
ACS Nano ; 16(12): 20174-20185, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36446407

RESUMO

Terahertz (THz) electromagnetic radiation is key to access collective excitations such as magnons (spins), plasmons (electrons), or phonons (atomic vibrations), thus bridging topics between optics and solid-state physics. Confinement of THz light to the nanometer length scale is desirable for local probing of such excitations in low-dimensional systems, thereby circumventing the large footprint and inherently low spectral power density of far-field THz radiation. For that purpose, phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials have recently emerged as a promising platform for THz nanooptics. Hence, there is a demand for the exploration of materials that feature not only THz PhPs at different spectral regimes but also host anisotropic (directional) electrical, thermoelectric, and vibronic properties. To that end, we introduce here the semiconducting vdW-material alpha-germanium(II) sulfide (GeS) as an intriguing candidate. By employing THz nanospectroscopy supported by theoretical analysis, we provide a thorough characterization of the different in-plane hyperbolic and elliptical PhP modes in GeS. We find not only PhPs with long lifetimes (τ > 2 ps) and excellent THz light confinement (λ0/λ > 45) but also an intrinsic, phonon-induced anomalous dispersion as well as signatures of naturally occurring, substrate-mediated PhP canalization within a single GeS slab.

8.
Opt Express ; 30(4): 5051-5062, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209476

RESUMO

Recently, ferroelectric domain walls (DWs) have attracted considerable attention due to their intrinsic topological effects and their huge potential for optoelectronic applications. In contrast, many of the underlying physical properties and phenomena are not well characterized. In this regard, analyzing the vibrational properties, e.g. by Raman spectroscopy, provides direct access to the various local material properties, such as strains, defects or electric fields. While the optical phonon spectra of DWs have been widely investigated in the past, no reports on the acoustic phonon properties of DWs exist. In this work, we present a joint Raman and Brillouin visualization of ferroelectric DWs in the model ferroelectric lithium niobate. This is possible by using a combined Raman and virtually imaged phased array Brillouin setup. Here, we show that DWs can be visualized via frequency shifts observed in the acoustic phonons, as well. The observed contrast then is qualitatively explained by models adapted from Raman spectroscopy. This work, hence, provides a novel route to study ferroelectric DWs and their intrinsic mechanical properties.

9.
Sci Rep ; 11(1): 22266, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782687

RESUMO

Ferroelectricity in crystalline hafnium oxide thin films is strongly investigated for the application in non-volatile memories, sensors and other applications. Especially for back-end-of-line (BEoL) integration the decrease of crystallization temperature is of major importance. However, an alternative method for inducing ferroelectricity in amorphous or semi-crystalline hafnium zirconium oxide films is presented here, using the newly discovered effect of electric field-induced crystallization in hafnium oxide films. When applying this method, an outstanding remanent polarization value of 2P[Formula: see text] = 47 [Formula: see text]C/cm[Formula: see text] is achieved for a 5 nm thin film. Besides the influence of Zr content on the film crystallinity, the reliability of films crystallized with this effect is explored, highlighting the controlled crystallization, excellent endurance and long-term retention.

10.
Opt Express ; 29(21): 33615-33631, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809171

RESUMO

Domain walls (DWs) in ferroelectric (FE) and multiferroic materials possess an ever-growing potential as integrated functional elements, for instance in optoelectronic nanodevices. Mandatory, however, is the profound knowledge of the local-scale electronic and optical properties, especially at DWs that are still incompletely characterized to date. Here, we quantify the refractive index of individual FE DWs in periodically-poled LiNbO3 (PPLN) single crystals. When applying polarization-sensitive optical coherence tomography (PS-OCT) at 1300 nm using circular light polarization, we are able to probe the relevant electro-optical properties close to and at the DWs, including also their ordinary and extraordinary contributions. When comparing to numerical calculations, we conclude that the DW signals recorded for ordinary and extraordinary polarization stem from an increased refractive index of at least Δn > 2·10-3 that originates from a tiny region of < 30 nm in width. PS-OCT hence provides an extremely valuable tool to decipher and quantify subtle changes of refractive index profiles for both inorganic and biomedical nanomaterial systems.

11.
Nano Lett ; 21(21): 9012-9020, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665620

RESUMO

Chalcogenide phase change materials reversibly switch between non-volatile states with vastly different optical properties, enabling novel active nanophotonic devices. However, a fundamental understanding of their laser-switching behavior is lacking and the resulting local optical properties are unclear at the nanoscale. Here, we combine infrared scattering-type scanning near-field optical microscopy (SNOM) and Kelvin probe force microscopy (KPFM) to investigate four states of laser-switched Ge3Sb2Te6 (as-deposited amorphous, crystallized, reamorphized, and recrystallized) with nanometer lateral resolution. We find SNOM to be especially sensitive to differences between crystalline and amorphous states, while KPFM has higher sensitivity to changes introduced by melt-quenching. Using illumination from a free-electron laser, we use the higher sensitivity to free charge carriers of far-infrared (THz) SNOM compared to mid-infrared SNOM and find evidence that the local conductivity of crystalline states depends on the switching process. This insight into the local switching of optical properties is essential for developing active nanophotonic devices.

12.
Nanotechnology ; 32(42)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34261048

RESUMO

The discovery of ferroelectricity in the fluorite structure based hafnium oxide (HfO2) material sparked major efforts for reviving the ferroelectric field effect transistor (FeFET) memory concept. A Novel metal-ferroelectric-metal-ferroelectric-insulator-semiconductor (MFMFIS) FeFET memory is reported based on dual ferroelectric integration as an MFM and MFIS in a single gate stack using Si-doped Hafnium oxide (HSO) ferroelectric (FE) material. The MFMFIS top and bottom electrode contacts, dual HSO based ferroelectric layers, and tailored MFM to MFIS area ratio (AR-TB) provide a flexible stack structure tuning for improving the FeFET performance. The AR-TB tuning shows a tradeoff between the MFM voltage increase and the weaker FET Si channel inversion, particularly notable in the drain saturation currentID(sat)when the AR-TB ratio decreases. Dual HSO ferroelectric layer integration enables a maximized memory window (MW) and dynamic control of its size by tuning the MFM to MFIS switching contribution through the AR-TB change. The stack structure control via the AR-TB tuning shows further merits in terms of a low voltage switching for a saturated MW size, an extremely linear at wide dynamic range of the current update, as well as high symmetry in the long term synaptic potentiation and depression. The MFMFIS stack reliability is reported in terms of the switching variability, temperature dependence, endurance, and retention. The MFMFIS concept is thoroughly discussed revealing profound insights on the optimal MFMFIS stack structure control for enhancing the FeFET memory performance.

13.
Angew Chem Int Ed Engl ; 60(29): 15879-15885, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938602

RESUMO

Exceptionally electron-rich, nearly trigonal-planar tricyanidometalate anions [Fe(CN)3 ]7- and [Ru(CN)3 ]7- were stabilized in LiSr3 [Fe(CN)3 ] and AE3.5 [M(CN)3 ] (AE=Sr, Ba; M=Fe, Ru). They are the first examples of group 8 elements with the oxidation state of -IV. Microcrystalline powders were obtained by a solid-state route, single crystals from alkali metal flux. While LiSr3 [Fe(CN)3 ] crystallizes in P63 /m, the polar space group P63 with three-fold cell volume for AE3.5 [M(CN)3 ] is confirmed by second harmonic generation. X-ray diffraction, IR and Raman spectroscopy reveal longer C-N distances (124-128 pm) and much lower stretching frequencies (1484-1634 cm-1 ) than in classical cyanidometalates. Weak C-N bonds in combination with strong M-C π-bonding is a scheme also known for carbonylmetalates. Instead of the formal notation [Fe-IV (CN- )3 ]7- , quantum chemical calculations reveal non-innocent intermediate-valent CN1.67- ligands and a closed-shell d10 configuration for Fe, that is, Fe2- .

14.
Nat Commun ; 12(1): 2649, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976184

RESUMO

Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators.

15.
Nat Commun ; 12(1): 1995, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790286

RESUMO

Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry-Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.

16.
Biophys J ; 120(5): 773-780, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657362

RESUMO

Cells sense and react on changes of the mechanical properties of their environment and, likewise, respond to external mechanical stress applied to them. However, whether the gravitational field as overall body force modulates cellular behavior is unclear. Different studies demonstrated that micro- and hypergravity influences the shape and elasticity of cells, initiate cytoskeleton reorganization, and influence cell motility. All these cellular properties are interconnected and contribute to forces that cells apply on their surrounding microenvironment. Yet, studies that investigated changes of cell traction forces under hypergravity conditions are scarce. Here, we performed hypergravity experiments on 3T3 fibroblast cells using the large-diameter centrifuge at the European Space Agency - European Space Research and Technology Centre. Cells were exposed to hypergravity of up to 19.5 g for 16 h in both the upright and the inverted orientation with respect to the g-force vector. We observed a decrease in cellular traction forces when the gravitational field was increased up to 5.4 g, followed by an increase of traction forces for higher gravity fields up to 19.5 g independent of the orientation of the gravity vector. We attribute the switch in cellular response to shear thinning at low g-forces, followed by significant rearrangement and enforcement of the cytoskeleton at high g-forces.


Assuntos
Hipergravidade , Células 3T3 , Animais , Centrifugação , Fibroblastos , Camundongos , Tração
17.
Adv Mater ; 33(2): e2005777, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33270287

RESUMO

Electromagnetic field confinement is crucial for nanophotonic technologies, since it allows for enhancing light-matter interactions, thus enabling light manipulation in deep sub-wavelength scales. In the terahertz (THz) spectral range, radiation confinement is conventionally achieved with specially designed metallic structures-such as antennas or nanoslits-with large footprints due to the rather long wavelengths of THz radiation. In this context, phonon polaritons-light coupled to lattice vibrations-in van der Waals (vdW) crystals have emerged as a promising solution for controlling light beyond the diffraction limit, as they feature extreme field confinements and low optical losses. However, experimental demonstration of nanoscale-confined phonon polaritons at THz frequencies has so far remained elusive. Here, it is provided by employing scattering-type scanning near-field optical microscopy combined with a free-electron laser to reveal a range of low-loss polaritonic excitations at frequencies from 8 to 12 THz in the vdW semiconductor α-MoO3 . In this study, THz polaritons are visualized with: i) in-plane hyperbolic dispersion, ii) extreme nanoscale field confinement (below λo  /75), and iii) long polariton lifetimes, with a lower limit of >2 ps.

18.
Nat Commun ; 11(1): 6150, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262344

RESUMO

Optical activation of material properties illustrates the potentials held by tuning light-matter interactions with impacts ranging from basic science to technological applications. Here, we demonstrate for the first time that composite nanostructures providing nonlocal environments can be engineered to optically trigger photoinduced charge-transfer-dynamic modulations in the solid state. The nanostructures explored herein lead to out-of-phase behavior between charge separation and recombination dynamics, along with linear charge-transfer-dynamic variations with the optical-field intensity. Using transient absorption spectroscopy, up to 270% increase in charge separation rate is obtained in organic semiconductor thin films. We provide evidence that composite nanostructures allow for surface photovoltages to be created, which kinetics vary with the composite architecture and last beyond optical pulse temporal characteristics. Furthermore, by generalizing Marcus theory framework, we explain why charge-transfer-dynamic modulations can only be unveiled when optic-field effects are enhanced by nonlocal image-dipole interactions. Our demonstration, that composite nanostructures can be designed to take advantage of optical fields for tuneable charge-transfer-dynamic remote actuators, opens the path for their use in practical applications ranging from photochemistry to optoelectronics.

19.
Opt Express ; 28(22): 32316-32330, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114920

RESUMO

Local electric fields play the key role in near-field optical examinations and are especially appealing when exploring heterogeneous or even anisotropic nano-systems. Scattering-type near-field optical microscopy (s-SNOM) is the most commonly used method applied to explore and quantify such confined electric fields at the nanometer length scale: while most works so far did focus on analyzing the z-component oriented perpendicular to the sample surface under p-polarized tip/sample illumination only, recent experimental efforts in s-SNOM report that material resonant excitation might equally allow to probe in-plane electric field components. We thus explore this local vector-field behavior for a simple particle-tip/substrate system by comparing our parametric simulations based on finite element modelling at mid-IR wavelengths, to the standard analytical tip-dipole model. Notably, we analyze all the 4 different combinations for resonant and non-resonant tip and/or sample excitation. Besides the 3-dimensional field confinement under the particle tip present for all scenarios, it is particularly the resonant sample excitations that enable extremely strong field enhancements associated with vector fields pointing along all cartesian coordinates, even without breaking the tip/sample symmetry! In fact, in-plane (s-) resonant sample excitation exceeds the commonly-used p-polarized illumination on non-resonant samples by more than 6 orders of magnitude. Moreover, a variety of different spatial field distributions is found both at and within the sample surface, ranging from electric fields that are oriented strictly perpendicular to the sample surface, to fields that spatially rotate into different directions. Our approach shows that accessing the full vector fields in order to quantify all tensorial properties in nanoscale and modern-type materials lies well within the possibilities and scope of today's s-SNOM technique.

20.
Light Sci Appl ; 9: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549977

RESUMO

Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25-70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 µm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5-7 × 106 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted 1 4 power law.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA