Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4859, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849339

RESUMO

One-dimensional (1D) olivine iron phosphate (FePO4) is widely proposed for electrochemical lithium (Li) extraction from dilute water sources, however, significant variations in Li selectivity were observed for particles with different physical attributes. Understanding how particle features influence Li and sodium (Na) co-intercalation is crucial for system design and enhancing Li selectivity. Here, we investigate a series of FePO4 particles with various features and revealed the importance of harnessing kinetic and chemo-mechanical barrier difference between lithiation and sodiation to promote selectivity. The thermodynamic preference of FePO4 provides baseline of selectivity while the particle features are critical to induce different kinetic pathways and barriers, resulting in different Li to Na selectivity from 6.2 × 102 to 2.3 × 104. Importantly, we categorize the FePO4 particles into two groups based on their distinctly paired phase evolutions upon lithiation and sodiation, and generate quantitative correlation maps among Li preference, morphological features, and electrochemical properties. By selecting FePO4 particles with specific features, we demonstrate fast (636 mA/g) Li extraction from a high Li source (1: 100 Li to Na) with (96.6 ± 0.2)% purity, and high selectivity (2.3 × 104) from a low Li source (1: 1000 Li to Na) with (95.8 ± 0.3)% purity in a single step.

2.
ACS Appl Mater Interfaces ; 16(1): 712-722, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157368

RESUMO

Mineralization by MgO is an attractive potential strategy for direct air capture (DAC) of CO2 due to its tendency to form carbonate phases upon exposure to water and CO2. Hydration of MgO during this process is typically assumed to not be rate limiting, even at ambient temperatures. However, surface passivation by hydrated phases likely reduces the CO2 capture capacity. Here, we examine the initial hydration reactions that occur on MgO(100) surfaces to determine whether they could potentially impact CO2 uptake. We first used atomic force microscopy (AFM) to explore changes in reaction layers in water (pH = 6 and 12) and MgO-saturated solution (pH = 11) and found the reaction layers on MgO are heterogeneous and nonuniform. To determine how relative humidity (R.H.) affects reactivity, we reacted samples at room temperature in nominally dry N2 (∼11-12% R.H.) for up to 12 h, in humid (>95% R.H.) N2 for 5, 10, and 15 min, and in air at 33 and 75% R.H. for 8 days. X-ray reflectivity and electron microscopy analysis of the samples reveal that hydrated phases form rapidly upon exposure to humid air, but the growth of the hydrated reaction layer slows after its initial formation. Reaction layer thickness is strongly correlated with R.H., with denser reaction layers forming in 75% R.H. compared with 33% R.H. or nominally dry N2. The reaction layers are likely amorphous or poorly crystalline based on grazing incidence X-ray diffraction measurements. After exposure to 75% R.H. in air for 8 days, the reaction layer increases in density as compared to the sample reacted in humid N2 for 5-15 min. This may represent an initial step toward the crystallization of the reaction layer. Overall, high R.H. favors the formation of a hydrated, disordered layer on MgO. Based on our results, DAC in a location with a higher R.H. will be favorable, but growth may slow significantly from initial rates even on short timescales, presumably due to surface passivation.

3.
Environ Sci Technol ; 57(1): 266-276, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562683

RESUMO

Interactions of heavy metals with charged mineral surfaces control their mobility in the environment. Here, we investigate the adsorption of Y(III) onto the orthoclase (001) basal plane, the former as a representative of rare earth elements and an analogue of trivalent actinides and the latter as a representative of naturally abundant K-feldspar minerals. We apply in situ high-resolution X-ray reflectivity to determine the sorption capacity and molecular distribution of adsorbed Y species as a function of the Y3+ concentration, [Y3+], at pH 7 and 5. With [Y3+] ≥ 1 mM at pH 7, we observe an inner-sphere (IS) sorption complex at a distance of ∼1.5 Å from the surface and an outer-sphere (OS) complex at 3-4 Å. Based on the adsorption height of the IS complex, a bidentate, binuclear binding mode, in which Y3+ binds to two terminal oxygens, is proposed. In contrast, mostly OS sorption is observed at pH 5. The observed maximum Y coverage is ∼1.3 Y3+/AUC (AUC: area of the unit cell = 111.4 Å2) for all the investigated pH values and Y concentrations, which is in the expected range based on the estimated surface charge of orthoclase (001).


Assuntos
Metais Pesados , Silicatos , Raios X , Minerais , Adsorção
4.
Environ Sci Technol ; 55(18): 12403-12413, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34478280

RESUMO

Calcite is the most stable polymorph of calcium carbonate (CaCO3) under ambient conditions and is ubiquitous in natural systems. It plays a major role in controlling pH in environmental settings. Electrostatic phenomena at the calcite-water interface and the surface reactivity of calcite in general have important environmental implications. They may strongly impact nutrient and contaminant mobility in soils and other subsurface environments, they control oil recovery from limestone reservoirs, and they may impact the safety of nuclear waste disposal sites. Besides the environmental relevance, the topic is significant for industrial applications and cultural heritage preservation. In this study, the structure of the calcite(104)-water interface is investigated on the basis of a new extensive set of crystal truncation rod data. The results agree with recently reported structures and resolve previous ambiguities with respect to the coordination sphere of surface Ca ions. These structural features are introduced into an electrostatic three-plane surface complexation model, describing ion adsorption and charging at the calcite-water interface. Inner surface potential data for calcite, as measured with a calcite single-crystal electrode, are used as constraints for the model in addition to zeta potential data. Ion adsorption parameters are compared with molecular dynamics simulations. All model parameters, including protonation constants, ion-binding parameters, and Helmholtz capacitances, are within physically and chemically plausible ranges. A PhreeqC version of the model is presented, which we hope will foster application of the model in environmental studies.


Assuntos
Carbonato de Cálcio , Água , Adsorção , Íons , Simulação de Dinâmica Molecular
5.
Langmuir ; 34(41): 12270-12278, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30217107

RESUMO

We studied the adsorption behavior of ZrO2 nanoparticles on a muscovite (001) surface in the presence of cations from the alkali series (Li+, Na+, K+, Rb+, and Cs+). The results of X-ray reflectivity, i.e., specular crystal truncation rod and resonant anomalous X-ray reflectivity in combination with AFM images, show that the sorption of ZrO2 nanoparticles is significantly affected by the binding mode of alkali ions on the muscovite (001) surface. From solutions containing alkali ions binding as outer sphere surface complexes (i.e., Li+ and Na+), higher uptake of Zr4+ is observed corresponding to the binding of larger nanoparticles, which relatively easily replace the loosely bound alkali ions. However, Zr4+ uptake in solutions containing alkali ions binding as inner sphere surface complexes (i.e., K+, Rb+, and Cs+) is significantly lower, and smaller nanoparticles are found at the interface. In addition, the uptake of Zr4+ in the presence of inner sphere bound cations displays a strong linear relationship with the hydration energy of the coexisting alkali ion. The linear trend can be interpreted as competitive adsorption between ZrO2 nanoparticles and inner sphere bound alkali cations, which are replaced on the surface and undergo rehydration after release to the solution. The rehydration of alkali ions gives rise to a large energy gain, which dominates the reaction energy of the competitive adsorption process. The competitive adsorption mechanism of ZrO2 nanoparticles and alkali ions is discussed comprehensively to highlight the potential relationship between the hydration effect of alkali ions and the effect of charge density of the nanoparticles.

6.
J Colloid Interface Sci ; 524: 65-75, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29631220

RESUMO

A structural study of the surface complexation of Pb(II) on the (11¯02) surface of hematite was undertaken using crystal truncation rod (CTR) X-ray diffraction measurements under in situ conditions. The sorbed Pb was found to form inner sphere (IS) complexes at two types of edge-sharing sites on the half layer termination of the hematite (11¯02) surface. The best fit model contains Pb in distorted trigonal pyramids with an average PbO bond length of 2.27(4) Å and two characteristic Pb-Fe distances of 3.19(1) Å and 3.59(1) Å. In addition, a site coverage model was developed to simulate coverage as a function of sorbate-sorbate distance. The simulation results suggest a plausible Pb-Pb distance of 5.42 Å, which is slightly larger than the diameter of Pb's first hydration shell. This relates the best fit surface coverage of 0.59(4) Pb per unit cell at monolayer saturation to steric constraints as well as electrostatic repulsion imposed by the hydrated Pb complex. Based on the structural results we propose a stoichiometry of the surface complexation reaction of Pb(II) on the hematite (11¯02) surface and use bond valence analysis to assign the protonation schemes of surface oxygens. Surface reaction stoichiometry suggests that the proton release in the course of surface complexation occurs from the Pb-bound surface O atoms at pH 5.5.

7.
Langmuir ; 33(46): 13189-13196, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29084427

RESUMO

Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that, during corrosion of the UO2 (111) surface under either 1 atm of O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface X-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ∼52 Šbelow the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).

8.
Phys Chem Chem Phys ; 19(45): 30473-30480, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29114651

RESUMO

The U 4f line is commonly used to determine uranium oxidation states with X-ray photoelectron spectroscopy (XPS). In contrast, the XPS of the shallow core-levels of uranium are rarely recorded. Nonetheless, theory has shown that the U 5d (and 5p) multiplet structure is very sensitive to oxidation state. In this contribution we extracted the U(iv) and U(v) 5d XPS peak shapes from near stoichiometric and oxidized UO2 single crystal samples, respectively, where the oxidation state of U was constrained by fitting the 4f line. The empirically extracted 5d spectra were similar to the theoretically determined multiplet structures and were used, along with the relatively simple U(vi) component that was constrained by theory, to determine the oxidation states of UO2+x samples. The results showed a very strong correlation between oxidation states determined by the 5d and 4f line and suggested that the 5d might be more sensitive to minor amounts of oxidation than the 4f. Limitations of the methodology, as well as advantages of using the 5d relative to the 4f line are discussed.

9.
J Am Chem Soc ; 139(7): 2581-2584, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28173705

RESUMO

The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe2O3) as a model oxide, we show through a direct comparison of in situ synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (11̅02) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locations and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface pKa prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide-water interfaces.

10.
J Vis Exp ; (119)2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28117811

RESUMO

In this report we describe detailed procedures for carrying out single crystal X-ray diffraction experiments with a diamond anvil cell (DAC) at the GSECARS 13-BM-C beamline at the Advanced Photon Source. The DAC program at 13-BM-C is part of the Partnership for Extreme Xtallography (PX^2) project. BX-90 type DACs with conical-type diamond anvils and backing plates are recommended for these experiments. The sample chamber should be loaded with noble gas to maintain a hydrostatic pressure environment. The sample is aligned to the rotation center of the diffraction goniometer. The MARCCD area detector is calibrated with a powder diffraction pattern from LaB6. The sample diffraction peaks are analyzed with the ATREX software program, and are then indexed with the RSV software program. RSV is used to refine the UB matrix of the single crystal, and with this information and the peak prediction function, more diffraction peaks can be located. Representative single crystal diffraction data from an omphacite (Ca0.51Na0.48)(Mg0.44Al0.44Fe2+0.14Fe3+0.02)Si2O6 sample were collected. Analysis of the data gave a monoclinic lattice with P2/n space group at 0.35 GPa, and the lattice parameters were found to be: a = 9.496 ±0.006 Å, b = 8.761 ±0.004 Å, c = 5.248 ±0.001 Å, ß = 105.06 ±0.03º, α = γ = 90º.


Assuntos
Cristalografia por Raios X/métodos , Diamante/química , Difração de Pó , Pressão , Síncrotrons
11.
Langmuir ; 32(41): 10473-10482, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27678146

RESUMO

X-ray scattering techniques [in situ resonant anomalous X-ray reflectivity (RAXR) and specular crystal truncation rods (CTR)] were used to compare muscovite (001) surfaces in contact with solutions containing either 0.1 mM plutonyl(VI) or 1 mM uranyl(VI) at pH = 3.2 ± 0.2, I(NaCl) = 0.1 M, as well as in situ grazing-incidence X-ray absorption near-edge structure (GI XANES) spectroscopy and ex situ alpha spectrometry. Details of the surface coverage are found to be very different. In the case of Pu, alpha spectrometry finds a surface coverage of 8.3 Pu/AUC (AUC = 46.72 Å2, the unit cell area), far in excess of the 0.5 Pu/AUC expected for ionic adsorption of PuO22+. GI XANES results show that Pu is predominantly tetravalent on the surface, and the CTR/RAXR results show that the adsorbed Pu is broadly distributed. Taken together with previous findings, the results are consistent with adsorption of Pu in the form of Pu(IV)-oxo-nanoparticles. In contrast, uranyl shows only negligible, if any, adsorption according to all methods applied. These results are discussed and compared within the context of known Pu and U redox chemistry.

12.
Phys Rev Lett ; 114(24): 246103, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26196990

RESUMO

Using x-ray scattering, spectroscopy, and density-functional theory, we determine the structure of the oxidation front when a UO(2) (111) surface is exposed to oxygen at ambient conditions. In contrast to classical diffusion and previously reported bulk UO(2+x) structures, we find oxygen interstitials order into a nanoscale superlattice with three-layer periodicity and uranium in three oxidation states: IV, V, and VI. This oscillatory diffusion profile is driven by the nature of the electron transfer process, and has implications for understanding the initial stages of oxidative corrosion in materials at the atomistic level.


Assuntos
Modelos Químicos , Compostos de Urânio/química , Corrosão , Difusão , Oxirredução , Difração de Raios X
13.
Faraday Discuss ; 180: 55-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25924589

RESUMO

We present a multidisciplinary study on the hematite (001)-aqueous solution interface, in particular the relationship between surface structure (studied via surface diffraction in a humid atmosphere) and the macroscopic charging (studied via surface- and zeta-potential measurements in electrolyte solutions as a function of pH). Upon aging in water changes in the surface structure are observed, that are accompanied by drastic changes in the zeta-potential. Surprisingly the surface potential is not accordingly affected. We interpret our results by increasing hydration of the surface with time and enhanced reactivity of singly-coordinated hydroxyl groups that cause the isoelectric point of the surface to shift to values that are reminiscent of those typically reported for hematite particles. In its initial stages after preparation the hematite surface is very flat and only weakly hydrated. Our model links the entailing weak water structure with the observed low isoelectric point reminiscent of hydrophobic surfaces. The absence of an aging effect on the surface potential vs. pH curves is interpreted as domination of the surface potential by the doubly coordinated hydroxyls, which are present on both surfaces.

14.
Environ Sci Technol ; 47(24): 14178-84, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24266655

RESUMO

The formation of Pu(IV)-oxo-nanoparticles from Pu(III) solutions by a surface-enhanced redox/polymerization reaction at the muscovite (001) basal plane is reported, with a continuous increase in plutonium coverage observed in situ over several hours. The sorbed Pu extends >70 Å from the surface with a maximum concentration at 10.5 Å and a total coverage of >9 Pu atoms per unit cell area of muscovite (0.77 µg Pu/cm(2)) (determined independently by in situ resonant anomalous X-ray reflectivity and by ex-situ alpha-spectrometry). The presence of discrete nanoparticles is confirmed by high resolution atomic force microscopy. We propose that the formation of these Pu(IV) nanoparticles from an otherwise stable Pu(III) solution can be explained by the combination of a highly concentrated interfacial Pu-ion species, the Pu(III)-Pu(IV) redox equilibrium, and the strong proclivity of tetravalent Pu to hydrolyze and form polymeric species. These results are the first direct observation of such behavior of plutonium on a naturally occurring mineral, providing insights into understanding the environmental transport of plutonium and other contaminants capable of similar redox/polymerization reactions.


Assuntos
Silicatos de Alumínio/química , Eletrólitos/química , Nanopartículas/química , Plutônio/química , Adsorção , Elétrons , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Oxirredução , Soluções , Propriedades de Superfície , Fatores de Tempo , Espectroscopia por Absorção de Raios X
15.
Environ Sci Technol ; 47(21): 12131-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024496

RESUMO

Natural organic matter (NOM) often forms coatings on minerals. Such coatings are expected to affect metal-ion sorption due to abundant sorption sites in NOM and potential modifications to mineral surfaces, but such effects are poorly understood in complex multicomponent systems. Using poly(acrylic acid) (PAA), a simplified analog of NOM containing only carboxylic groups, Pb(II) and Zn(II) partitioning between PAA coatings and α-Al2O3 (1-102) and (0001) surfaces was investigated using long-period X-ray standing wave-florescence yield spectroscopy. In the single-metal-ion systems, PAA was the dominant sink for Pb(II) and Zn(II) for α-Al2O3(1-102) (63% and 69%, respectively, at 0.5 µM metal ions and pH 6.0). In equi-molar mixed-Pb(II)-Zn(II) systems, partitioning of both ions onto α-Al2O3(1-102) decreased compared with the single-metal-ion systems; however, Zn(II) decreased Pb(II) sorption to a greater extent than vice versa, suggesting that Zn(II) outcompeted Pb(II) for α-Al2O3(1-102) sorption sites. In contrast, >99% of both metal ions sorbed to PAA when equi-molar Pb(II) and Zn(II) were added simultaneously to PAA/α-Al2O3(0001). PAA outcompeted both α-Al2O3 surfaces for metal sorption but did not alter their intrinsic order of reactivity. This study suggests that single-metal-ion sorption results cannot be used to predict multimetal-ion sorption at NOM/metal-oxide interfaces when NOM is dominated by carboxylic groups.


Assuntos
Resinas Acrílicas/química , Óxido de Alumínio/química , Chumbo/química , Zinco/química , Adsorção , Hidróxido de Alumínio , Cristalização , Concentração de Íons de Hidrogênio , Íons/química , Metais/química , Minerais/química , Compostos Orgânicos , Espectrometria de Fluorescência/métodos , Raios X
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 1): 011305, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18763946

RESUMO

The interaction between fine grains and the surrounding interstitial gas in a granular bed can lead to qualitatively new phenomena not captured in a simple, single-fluid model of granular flows. This is demonstrated by the granular jet formed by the impact of a solid sphere into a bed of loose, fine sand. Unlike jets formed by impact in fluids, this jet is actually composed of two separate components, an initial thin jet formed by the collapse of the cavity left by the impacting object stacked on top of a second, thicker jet which depends strongly on the ambient gas pressure. This complex structure is the result of an interplay between ambient gas, bed particles, and impacting sphere. Here we present the results of systematic experiments that combine measurements of the jet above the surface varying the release height, sphere diameter, container size, and bed material with x-ray radiography below the surface to connect the changing response of the bed to the changing structure of the jet. We find that the interstitial gas trapped by the low permeability of a fine-grained bed plays two distinct roles in the formation of the jet. First, gas trapped and compressed between grains prevents compaction, causing the bed to flow like an incompressible fluid and allowing the impacting object to sink deep into the bed. Second, the jet is initiated by the gravity driven collapse of the cavity left by the impacting object. If the cavity is large enough, gas trapped and compressed by the collapsing cavity can amplify the jet by directly pushing bed material upwards and creating the thick jet. As a consequence of these two factors, when the ambient gas pressure is decreased, there is a crossover from a nearly incompressible, fluidlike response of the bed to a highly compressible, dissipative response. Compaction of the bed at reduced pressure reduces the final depth of the impacting object, resulting in a smaller cavity and in the demise of the thick jet.

17.
Proc Natl Acad Sci U S A ; 105(33): 11640-4, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18687889

RESUMO

The detailing of the intermolecular interactions in dense solid oxygen is essential for an understanding of the rich polymorphism and remarkable properties of this element at high pressure. Synchrotron inelastic x-ray scattering measurements of oxygen K-edge excitations to 38 GPa reveal changes in electronic structure and bonding on compression of the molecular solid. The measurements show that O(2) molecules interact predominantly through the half-filled 1pi(g)* orbital <10 GPa. Enhanced intermolecular interactions develop because of increasing overlap of the 1pi(g)* orbital in the low-pressure phases, leading to electron delocalization and ultimately intermolecular bonding between O(2) molecules at the transition to the epsilon-phase. The epsilon-phase, which consists of (O(2))(4) clusters, displays the bonding characteristics of a closed-shell system. Increasing interactions between (O(2))(4) clusters develop upon compression of the epsilon-phase, and provide a potential mechanism for intercluster bonding in still higher-pressure phases.

18.
Proc Natl Acad Sci U S A ; 105(23): 7925-9, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18535140

RESUMO

Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; 3O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

19.
Phys Rev Lett ; 99(3): 038003, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17678330

RESUMO

Noncohesive granular media exhibit complex responses to sudden impact that often differ from those of ordinary solids and liquids. We investigate how this response is mediated by the presence of interstitial gas between the grains. Using high-speed x-ray radiography we track the motion of a steel sphere through the interior of a bed of fine, loose granular material. We find a crossover from nearly incompressible, fluidlike behavior at atmospheric pressure to a highly compressible, dissipative response once most of the gas is evacuated. We discuss these results in light of recent proposals for the drag force in granular media.

20.
Environ Sci Technol ; 41(11): 3918-25, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17612169

RESUMO

The three-dimensional structure of the hydrated (1014) surface of MnCO3 at 90% relative humidity and 295 K is determined from measurements of X-ray scattering along ten crystal-truncation rods (CTRs). The scattering data provide both vertical and lateral information about the interfacial structure. The model that best fits the scattering data is a surface having a first layer of manganese carbonate and an overlayer of oxygen (as water). Within the measurement uncertainty, the overlayer of oxygen (O(w)) and the first-layer of manganese (Mn1) have equal occupancies of 0.84. The Mn1-O(w) distance between these layers is 2.59 +/- 0.04 angstroms. The overlayer O atoms are displaced laterally by 0.157 angstroms in the x- and 0.626 angstroms in the y-direction relative to the first-layer Mn atoms. The first-layer carbonate groups tilt by -4.2 +/- 2.1 degrees in phi (toward the surface plane) and -2.6 +/- 1.2 degrees in chi (an axis perpendicular to phi). The second-layer carbonate groups do not tilt, at least within measurement uncertainty. The spacing between Mn atom layers remains unchanged within measurement error whereas the spacing between layers of C atoms in carbonate contracts for the top three layers. Knowledge of the detailed atomic structure of the hydrated (1014) surface of MnCO3 provides a structural baseline for the interpretation of chemical reactivity.


Assuntos
Carbonatos/química , Manganês/química , Umidade , Estrutura Molecular , Oxigênio/química , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA