Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4761, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580318

RESUMO

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Proteínas Quinases/genética , Reparo do DNA/genética , DNA/genética
2.
ACS Pharmacol Transl Sci ; 4(6): 1835-1848, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34927014

RESUMO

Although prevalent, nonalcoholic fatty liver disease is not currently treated effectively with medicines. Initially, using wild-type and genome-edited clones of the human hepatocyte cell line HepG2, we show that activation of the orphan G protein-coupled receptor GPR35 is both able and sufficient to block liver X-receptor-mediated lipid accumulation. Studies on hepatocytes isolated from both wild-type and GPR35 knock-out mice were consistent with a similar effect of GPR35 agonists in these cells, but because of marked differences in the pharmacology of GPR35 agonists and antagonists at the mouse and human orthologues, as well as elevated basal lipid levels in hepatocytes from the GPR35 knock-out mice, no definitive conclusion could be reached. To overcome this, we generated and characterized a transgenic knock-in mouse line in which the corresponding human GPR35 splice variant replaced the mouse orthologue. In hepatocytes from these humanized GPR35 mice, activation of this receptor was shown conclusively to prevent, and also reverse, lipid accumulation induced by liver X-receptor stimulation. These studies highlight the potential to target GPR35 in the context of fatty liver diseases.

3.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484963

RESUMO

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Assuntos
Edição de Genes/métodos , Hepatócitos/transplante , Mutação , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Ornitina Carbamoiltransferase/genética , Adulto , Idoso , Amônia/metabolismo , Animais , Células Cultivadas , Criança , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hepatócitos/química , Hepatócitos/citologia , Humanos , Íntrons , Masculino , Camundongos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ácido Orótico/urina , Splicing de RNA
4.
SLAS Discov ; 22(6): 732-742, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28027450

RESUMO

Cell-based assays have long been important within hit discovery paradigms; however, improving the disease relevance of the assay system can positively affect the translation of small-molecule drug discovery, especially if adopted in the initial hit identification assay. Consequently, there is an increasing need for disease-relevant assay systems capable of running at large scale, including the use of induced pluripotent stem cells and donor-derived primary cells. Major hurdles to adopting these assays for high-throughput screening are the cost, availability of cells, and complex protocols. Miniaturization of such assays to 1536-well format is an approach that can reduce costs and increase throughput. Adaptation of these complex cell assays to 1536-well format brings major challenges in liquid handling for high-content assays requiring washing steps and coating of plates. In addition, problematic edge effects and reduced assay quality are frequently encountered. In this study, we describe the novel application of a centrifugal plate washer to facilitate miniaturization of a range of 1536-well cell assays and techniques to reduce edge effects, all of which improved throughput and data quality. Cell assays currently limited in throughput because of cost and complex protocols may be enabled by the techniques presented in this study.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos , Microscopia de Fluorescência , Imagem Molecular/métodos , Fenótipo
5.
Mol Cell Biol ; 36(2): 285-94, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26527619

RESUMO

Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake.


Assuntos
Colesterol/metabolismo , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vias Biossintéticas , Linhagem Celular , Inativação Gênica , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
FEBS Lett ; 587(15): 2399-404, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23770096

RESUMO

Succinate has been reported as the endogenous ligand for GPR91. In this study, succinate was confirmed to activate GPR91 resulting in both 3'-5'-cyclic adenosine monophosphate (cAMP) inhibition and inositol phosphate formation in a pertussis toxin (PTX)-sensitive manner. GPR91 agonist-mediated effects detected using dynamic mass redistribution (DMR) were inhibited with PTX, edelfosine and U73122 demonstrating the importance of not only the Gαi pathway but also PLCß. These results show that GPR91 when expressed in HEK293s cells couples exclusively through the Gαi pathway and acts through Gαi not only to inhibit cAMP production but also to increase intracellular Ca(2+) in an inositol phosphate dependent mechanism via PLCß activation.


Assuntos
Cálcio/metabolismo , Fosfolipase C beta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Succinatos/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Transdução de Sinais
7.
Biochem Pharmacol ; 77(9): 1522-30, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19426690

RESUMO

Tachykinin NK receptors (NKRs) differ to a large degree among species with respect to their affinities for small molecule antagonists. The aims of the present study were to clone NKRs from gerbil (NK2R and NK3R) and dog (NK1R, NK2R and NK3R) in which the sequence was previously unknown and to investigate the potency of several NKR antagonists at all known human, dog, gerbil and rat NKRs. The NKR protein coding sequences were cloned and expressed in CHO cells. The inhibitory concentrations of selective and non-selective NKR antagonists were determined by inhibition of agonist-induced mobilization of intracellular Ca2+. Receptor homology models were constructed based on the rhodopsin crystal structure to investigate and identify the antagonist binding sites and interaction points in the transmembrane (TM) regions of the NKRs. Data collected using the cloned dog NK1R confirmed that the dog NK1R displays similar pharmacology as the human and the gerbil NK1R, but differs greatly from the mouse and the rat NK1R. Despite species-related amino acid (AA) differences located close to the antagonist binding pocket of the NK2R, they did not affect the potency of the antagonists ZD6021 and saredutant. Two AA differences located close to the antagonist binding site of NK3R likely influence the NK3R antagonist potency, explaining the 3-10-fold decrease in potency observed for the rat NK3R. For the first time, detailed pharmacological experiments in vitro with cloned NKRs demonstrate that not only human, but also dog and gerbil NKR displays similar antagonist pharmacology while rat diverges significantly with respect to NK1R and NK3R.


Assuntos
Morfolinas/farmacologia , Antagonistas dos Receptores de Neurocinina-1 , Receptores da Neurocinina-2/antagonistas & inibidores , Receptores da Neurocinina-3/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Aprepitanto , Sequência de Bases , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Cães , Gerbillinae , Cobaias , Humanos , Camundongos , Dados de Sequência Molecular , Ratos , Receptores da Neurocinina-1/química , Receptores da Neurocinina-2/química , Receptores da Neurocinina-3/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transfecção
8.
Biochem Pharmacol ; 76(4): 476-81, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18601911

RESUMO

Tachykinin NK(2) receptor antagonists are potentially beneficial in treating various disorders including irritable bowel syndrome, urinary incontinence, depression and anxiety. The current study evaluates the frequency of single nucleotide polymorphisms (SNPs) in the human NK(2) receptor gene (TACR2). In addition, the potency of the endogenous peptide agonist neurokinin A (NKA), and the small molecule antagonists saredutant (NK(2)-selective) and ZD6021 (pan-NK antagonist) at the various NK(2) receptor protein variants were determined. The TACR2 gene was sequenced from 37 individuals. Two amino acid changing SNPs encoding the NK(2) receptor variants Ile23Thr and Arg375His were found. The frequency of the four possible protein variants differed between populations. Site-directed mutagenesis was performed introducing either SNP or both SNPs into the TACR2 gene and the constructs were transfected into CHO cells. NKA-evoked increases in intracellular Ca(2+) were monitored by FLIPR. The potency of saredutant and ZD6021 was evaluated by their ability to inhibit NKA-induced increases in intracellular Ca(2+). NKA evoked increases in intracellular Ca(2+) with a potency ranging between 1 and 5nM in CHO cells expressing the different constructs. Saredutant and ZD6021 blocked NKA-evoked increases in intracellular Ca(2+) with pK(b) values ranging between 8.8-9.3 and 7.9-8.7, respectively. The current study demonstrates that polymorphisms leading to the Ile23Thr and Arg375His amino acid exchanges are highly prevalent in the human TACR2 gene. These polymorphisms however do not appear to affect the potency of the endogenous agonist NKA or the small molecule antagonists saredutant and ZD6021 with respect to intracellular Ca(2+) signalling.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Receptores da Neurocinina-2/genética , Receptores de Taquicininas/antagonistas & inibidores , Animais , Células CHO , Cricetinae , Cricetulus , Frequência do Gene , Variação Genética , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Transfecção
9.
Eur J Pharmacol ; 577(1-3): 78-86, 2007 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17920583

RESUMO

Intracerebroventricular (i.c.v.) administration of tachykinin NK(1) receptor agonists induces tapping of the hind legs in gerbils, so-called gerbil foot tapping, which is thought to reflect a fear-related response. The aim of the present study was to examine how ligands selective for NK(1), NK(2) and NK(3) receptors affect the gerbil foot tap response. Agonists selective for NK receptor subtypes were administered i.c.v. and the gerbil foot tap response was monitored. The effect of systemically administered antagonists was also studied. The interaction of ligands with gerbil NK(1) receptors was evaluated using autoradiography on gerbil brain slices with [(3)H]-Sar,Met(O(2))-substance P or [(3)H]GR205171 as radioligand. The effects of ligands on NK(1) and NK(3) receptor-mediated increases in intracellular calcium in vitro were studied in Chinese hamster ovary cells expressing the cloned gerbil receptors. The selective NK(1) receptor agonist ASMSP and the selective NK(3) receptor agonist senktide induced dose-dependent increases in gerbil foot tapping with similar potency. The maximal effect of senktide was approximately 40% of the maximal response evoked by ASMSP. The effects of ASMSP and senktide were blocked by administration of the selective NK(1) receptor antagonist CP99,994 (10 micromol/kg s.c.). The effects of senktide, but not ASMSP, were blocked by administration of the selective NK(3) receptor antagonist SB223412 (50 micromol/kg i.p.). Senktide did not displace NK(1) receptor radioligand binding and was >1000-fold less potent than ASMSP at activating gerbil NK(1) receptors. The selective NK(3) receptor agonist senktide evokes fear-related gerbil foot tapping, an effect which probably involves indirect enhancement of NK(1) receptor signalling.


Assuntos
Comportamento Animal/efeitos dos fármacos , Antagonistas dos Receptores de Neurocinina-1 , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Receptores da Neurocinina-3/antagonistas & inibidores , Substância P/análogos & derivados , Animais , Autorradiografia , Encéfalo/metabolismo , Células CHO , Cálcio/metabolismo , Clonagem Molecular , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , , Gerbillinae , Injeções Intraventriculares , Masculino , Neurocinina A/análogos & derivados , Neurocinina A/farmacologia , Piperidinas/farmacologia , Quinolinas/farmacologia , Receptores da Neurocinina-2/antagonistas & inibidores , Substância P/antagonistas & inibidores , Substância P/farmacologia
10.
Biochem Pharmacol ; 73(2): 259-69, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17097619

RESUMO

The present study investigates the pharmacology of the cloned neurokinin 1 receptor from the gerbil (gNK(1)R), a species claimed to have human-like NK(1)R (hNK(1)R) pharmacology. The amino acid sequence of NK(1)R was cloned. The hNK(1)R, rat NK(1)R (rNK(1)R), gNK(1)R and mutants of the gNK(1)R were expressed in CHO cells. The affinity and potency of NKR agonists and the NK(1)R antagonists CP99994 and RP67580 (NK(1)R-selective) and ZD6021 (NK1/2R) were assessed in vitro by monitoring [(3)H]-SarMet SP binding and substance P-evoked mobilization of intracellular Ca(2+). The gerbil foot tap (GFT) method was used to assess the potency of the antagonists in vivo. The gNK(1)R coding sequence displayed an overall 95% and 97% homology with hNK(1)R and rNK(1)R, respectively. The affinity of the NK(1)R-selective agonist (3)H-SarMet SP for human and gerbil NK(1)R was similar (2.0 and 3.1 nM) but lower for rNK(1)R (12.4 nM). The rank order potency of the agonists for NK(1)R was SP > or = ASMSP > or = NKA >>> pro7NKB in all species. The NK(1)R antagonists, ZD6021 and CP99994, had comparable affinity and potency for gerbil and human NK(1)R, but were 1000-fold less potent for rNK(1)R. In contrast, RP67580 had comparable affinity and potency for all three species. Mutations in positions 116 and 290 did not affect agonist potency at the gNK(1)R while the potency of the antagonists ZD6021 and CP99994 were markedly decreased (10-20-fold). It is concluded that gNK(1)R has similar antagonist pharmacology as the human-like orthologue and that species differences in antagonist function depend on key residues in the coding sequence and antagonist structure.


Assuntos
Antagonistas dos Receptores de Neurocinina-1 , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Primers do DNA , Gerbillinae , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ratos , Receptores da Neurocinina-1/química , Receptores da Neurocinina-1/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA