Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(6): 1413-1427.e9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823390

RESUMO

Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Influenza B , Influenza Humana , Neuraminidase , Neuraminidase/imunologia , Humanos , Vírus da Influenza B/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Replicação Viral/efeitos dos fármacos
2.
Nature ; 629(8013): 878-885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720086

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Simulação por Computador , Desenho de Fármacos , SARS-CoV-2 , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Mutação , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Análise Mutacional de DNA , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , Desenho de Fármacos/métodos
3.
Nat Commun ; 14(1): 5650, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704627

RESUMO

The zoonotic Rift Valley fever virus (RVFV) can cause severe disease in humans and has pandemic potential, yet no approved vaccine or therapy exists. Here we describe a dual-mechanism human monoclonal antibody (mAb) combination against RVFV that is effective at minimal doses in a lethal mouse model of infection. We structurally analyze and characterize the binding mode of a prototypical potent Gn domain-A-binding antibody that blocks attachment and of an antibody that inhibits infection by abrogating the fusion process as previously determined. Surprisingly, the Gn domain-A antibody does not directly block RVFV Gn interaction with the host receptor low density lipoprotein receptor-related protein 1 (LRP1) as determined by a competitive assay. This study identifies a rationally designed combination of human mAbs deserving of future investigation for use in humans against RVFV infection. Using a two-pronged mechanistic approach, we demonstrate the potent efficacy of a rationally designed combination mAb therapeutic.


Assuntos
Anticorpos Monoclonais , Vírus da Febre do Vale do Rift , Animais , Camundongos , Humanos , Bioensaio , Modelos Animais de Doenças , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
4.
Nat Microbiol ; 8(7): 1293-1303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322112

RESUMO

Rodent-borne hantaviruses are prevalent worldwide and upon spillover to human populations, cause severe disease for which no specific treatment is available. A potent antibody response is key for recovery from hantavirus infection. Here we study a highly neutralizing human monoclonal antibody, termed SNV-42, which was derived from a memory B cell isolated from an individual with previous Sin Nombre virus (SNV) infection. Crystallographic analysis demonstrates that SNV-42 targets the Gn subcomponent of the tetrameric (Gn-Gc)4 glycoprotein assembly that is relevant for viral entry. Integration of our 1.8 Å structure with the (Gn-Gc)4 ultrastructure arrangement indicates that SNV-42 targets the membrane-distal region of the virus envelope. Comparison of the SNV-42 paratope encoding variable genes with inferred germline gene segments reveals high sequence conservation, suggesting that germline-encoded antibodies inhibit SNV. Furthermore, mechanistic assays reveal that SNV-42 interferes with both receptor recognition and fusion during host-cell entry. This work provides a molecular-level blueprint for understanding the human neutralizing antibody response to hantavirus infection.


Assuntos
Infecções por Hantavirus , Vírus Sin Nombre , Humanos , Vírus Sin Nombre/fisiologia , Anticorpos Monoclonais , Anticorpos Neutralizantes , Glicoproteínas
5.
Elife ; 122023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971354

RESUMO

Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.


Assuntos
Doenças Transmissíveis , Vírus Hantaan , Infecções por Hantavirus , Orthohantavírus , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Hantavirus/prevenção & controle , Roedores
6.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324800

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

7.
mBio ; 12(5): e0244021, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634945

RESUMO

Envelope protein-targeted vaccines for flaviviruses are limited by concerns of antibody-dependent enhancement (ADE) of infections. Nonstructural protein 1 (NS1) provides an alternative vaccine target that avoids this risk since this protein is absent from the virion. Beyond its intracellular role in virus replication, extracellular forms of NS1 function in immune modulation and are recognized by host-derived antibodies. The rational design of NS1-based vaccines requires an extensive understanding of the antigenic sites on NS1, especially those targeted by protective antibodies. Here, we isolated human monoclonal antibodies (MAbs) from individuals previously naturally infected with WNV, mapped their epitopes using structure-guided mutagenesis, and evaluated their efficacy in vivo against lethal WNV challenge. The most protective epitopes clustered at three antigenic sites that are exposed on cell surface forms of NS1: (i) the wing flexible loop, (ii) the outer, electrostatic surface of the wing, and (iii) the spaghetti loop face of the ß-ladder. One additional MAb mapped to the distal tip of the ß-ladder and conferred a lower level of protection against WNV despite not binding to NS1 on the surface of infected cells. Our study defines the epitopes and modes of binding of protective anti-NS1 MAb antibodies following WNV infection, which may inform the development of NS1-based countermeasures against flaviviruses. IMPORTANCE Therapeutic antibodies against flaviviruses often promote neutralization by targeting the envelope protein of the virion. However, this approach is hindered by a possible concern for antibody-dependent enhancement of infection and paradoxical worsening of disease. As an alternative strategy, antibodies targeting flavivirus nonstructural protein 1 (NS1), which is absent from the virion, can protect against disease and do not cause enhanced infection. Here, we evaluate the structure-function relationships and protective activity of West Nile virus (WNV) NS1-specific monoclonal antibodies (MAbs) isolated from the memory B cells of a naturally infected human donor. We identify several anti-NS1 MAbs that protect mice against lethal WNV challenge and map their epitopes using charge reversal mutagenesis. Antibodies targeting specific regions in the NS1 structure could serve as the basis for countermeasures that control WNV infection in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas não Estruturais Virais/imunologia , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/prevenção & controle , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Epitopos/imunologia , Humanos , Masculino , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Replicação Viral
9.
Cell Rep ; 35(5): 109086, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951434

RESUMO

New World hantaviruses (NWHs) are endemic in North and South America and cause hantavirus cardiopulmonary syndrome (HCPS), with a case fatality rate of up to 40%. Knowledge of the natural humoral immune response to NWH infection is limited. Here, we describe human monoclonal antibodies (mAbs) isolated from individuals previously infected with Sin Nombre virus (SNV) or Andes virus (ANDV). Most SNV-reactive antibodies show broad recognition and cross-neutralization of both New and Old World hantaviruses, while many ANDV-reactive antibodies show activity for ANDV only. mAbs ANDV-44 and SNV-53 compete for binding to a distinct site on the ANDV surface glycoprotein and show potently neutralizing activity to New and Old World hantaviruses. Four mAbs show therapeutic efficacy at clinically relevant doses in hamsters. These studies reveal a convergent and potently neutralizing human antibody response to NWHs and suggest therapeutic potential for human mAbs against HCPS.


Assuntos
Anticorpos Monoclonais/imunologia , Infecções por Hantavirus/genética , Orthohantavírus/patogenicidade , Animais , Cricetinae , Infecções por Hantavirus/mortalidade , Humanos , Análise de Sobrevida
10.
mSphere ; 5(4)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669473

RESUMO

Hantaviruses are zoonotic pathogens found in parts of Europe, Asia, South America, and North America, which can cause renal and respiratory failure with fatality rates up to 40%. There are currently no FDA-approved vaccines or therapeutics for hantavirus-related diseases; however, it is evident that a robust neutralizing antibody response is critical for protection from severe disease. Although virologists first described this family of viruses in the 1950s, there is limited information on the neutralizing epitopes that exist on the hantavirus antigenic glycoproteins, Gn and Gc, and sites important for the design of effective therapeutics and vaccines. We provide a thorough summary of the hantavirus field from an immunological perspective. In particular, we discuss our current structural knowledge of antigenic proteins Gn and Gc, identification of B cell neutralizing epitopes, previously isolated monoclonal antibodies and their cross-reactivity between different hantavirus strains, and current developments toward vaccines and therapeutics. We conclude with some outstanding questions in the field and emphasize the need for additional studies of the human antibody response to hantavirus infection.IMPORTANCE Hantaviruses are pathogens that sometimes pass from animals to humans, and they are found in parts of Europe, Asia, and North and South America. When human infection occurs, these viruses can cause kidney or lung failure, and as many as 40% of infected people die. Currently, there are no vaccines or therapeutics for hantavirus-related diseases available. A first step in developing prevention measures is determining what type of immune response is protective. Increasingly it has become clear that the induction of a type of response called a neutralizing antibody response is critical for protection from severe disease. Although virologists first described this family of viruses in the 1950s, there is limited information on what features on the surface of hantaviruses are recognized by the immune system. Here, we review the current state of knowledge of this information, which is critical for the design of effective therapeutics and vaccines.


Assuntos
Anticorpos Neutralizantes/sangue , Antígenos Virais/imunologia , Infecções por Hantavirus/imunologia , Imunidade Humoral , Animais , Ensaios Clínicos como Assunto , Epitopos de Linfócito B/imunologia , Orthohantavírus/imunologia , Humanos , Camundongos
11.
Org Lett ; 17(18): 4546-9, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26335519

RESUMO

Combretastatin A4 is a stilbenoid tubulin binding mitotic inhibitor whose conformation greatly influences its potency, making it an excellent candidate for adaptation as a photoactivatable tool. Herein we report a novel synthesis, the facile isomerization with commercial grade equipment, and biological activity of azo-combretastatin A4 in vitro and in human cancer cells. Photoisomerized azo-combretestatin A4 is at least 200-fold more potent in cellular culture, making it a promising phototherapeutic and biomedical research tool.


Assuntos
Estilbenos/síntese química , Estilbenos/farmacologia , Moduladores de Tubulina , Humanos , Estrutura Molecular , Processos Fotoquímicos , Estilbenos/química , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA