RESUMO
Prolonged wait times in healthcare are a complex issue that can negatively impact both clients and staff. Longer wait times are often caused by a number of factors such as overly complicated scheduling, inefficient use of resources, extraneous processes, and misalignment of supply and demand. Growing evidence suggests a correlation between wait times and client satisfaction. This relationship, however, is complex. Some research suggests that client satisfaction with wait times may be improved with interventions that enhance the waiting experience and not actual wait times. This project aimed to improve the average daily rating of the client waiting experience by 1 point on a 7-point Likert scale.A quality improvement study was conducted to analyse client satisfaction with wait times and enhance clients' satisfaction while waiting. Quality improvement methods, mainly co-design sessions, were used to co-create and implement an intervention to improve clients' experience with waiting in the clinic.The project resulted in the implementation of a whiteboard intervention in the clinic to inform clients where they are in the queue. The whiteboard also included static data summarising the average wait times from the previous month. Both aspects of the whiteboard were designed to allow patients to better approximate their wait times. Though the quantitative analysis did not reveal a 1-point improvement on a 7-point Likert scale, the feedback from staff and clients was positive. Since implementation, clinic staff and management have developed the intervention into a high-fidelity digital board that is still in use today. Furthermore, the use of the intervention has been extended locally, with additional ambulatory clinics at the hospital planning to use the set-up in their clinic waiting rooms.
Assuntos
Pacientes Ambulatoriais , Listas de Espera , Humanos , Saúde Mental , Instituições de Assistência Ambulatorial , Satisfação do PacienteRESUMO
BACKGROUND: Implementing digital health technologies is complex but can be facilitated by considering the features of the tool that is being implemented, the team that will use it, and the routines that will be affected. OBJECTIVE: The goal of this study was to assess the implementation of a remote-monitoring initiative for patients with chronic obstructive pulmonary disease in Ontario, Canada using the Tool+Team+Routine framework and to refine this approach to conceptualize the adoption of technologies in health care. METHODS: This study was a qualitative research project that took place alongside a randomized controlled trial comparing a technology-enabled self-monitoring program with a technology-enabled self- and remote-monitoring program in patients with chronic obstructive pulmonary disease and with standard care. This study included interviews with 5 remote-monitoring patients, 3 self-monitoring patients, 2 caregivers, 5 health care providers, and 3 hospital administrators. The interview questions were structured around the 3 main concepts of the Tool+Team+Routine framework. RESULTS: Findings emphasized that (1) technologies can alter relationships between providers and patients, and that these relationships drove the development of a new service arising from the technology, in our case, and (2) technologies can create additional work that is not visible to management as a result of not being considered within the scope of the service. CONCLUSIONS: Literature on the implementation of digital health technologies has still not reconciled the importance of interpersonal relationships to conventional implementation strategies. By acknowledging the centrality of such relationships, implementation teams can better plan for the adaptations required in order to make new technologies work for patients and health care providers. Further work will need to address how specific individuals administering a remote-monitoring program work to build relationships, and how these relationships and other sources of activity might lead to technological scope creep-an unanticipated expanding scope of work activities in relation to the function of the tool.
Assuntos
Monitorização Fisiológica/métodos , Doença Pulmonar Obstrutiva Crônica/terapia , Consulta Remota/métodos , Telemedicina/métodos , Feminino , Humanos , Masculino , Pesquisa QualitativaRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and leads to frequent hospital admissions and emergency department (ED) visits. COPD exacerbations are an important patient outcome, and reducing their frequency would result in significant cost savings. Remote monitoring and self-monitoring could both help patients manage their symptoms and reduce the frequency of exacerbations, but they have different resource implications and have not been directly compared. OBJECTIVE: This study aims to compare the effectiveness of implementing a technology-enabled self-monitoring program versus a technology-enabled remote monitoring program in patients with COPD compared with a standard care group. METHODS: We conducted a 3-arm randomized controlled trial evaluating the effectiveness of a remote monitoring and a self-monitoring program relative to standard care. Patients with COPD were recruited from outpatient clinics and a pulmonary rehabilitation program. Patients in both interventions used a Bluetooth-enabled device kit to monitor oxygen saturation, blood pressure, temperature, weight, and symptoms, but only patients in the remote monitoring group were monitored by a respiratory therapist. All patients were assessed at baseline and at 3 and 6 months after program initiation. Outcomes included self-management skills, as measured by the Partners in Health (PIH) Scale; patient symptoms measured with the St George's Respiratory Questionnaire (SGRQ); and the Bristol COPD Knowledge Questionnaire (BCKQ). Patients were also asked to self-report on health system use, and data on health use were collected from the hospital. RESULTS: A total of 122 patients participated in the study: 40 in the standard care, 41 in the self-monitoring, and 41 in the remote monitoring groups. Although all 3 groups improved in PIH scores, BCKQ scores, and SGRQ impact scores, there were no significant differences among any of the groups. No effects were observed on the SGRQ activity or symptom scores or on hospitalizations, ED visits, or clinic visits. CONCLUSIONS: Despite regular use of the technology, patients with COPD assigned to remote monitoring or self-monitoring did not have any improvement in patient outcomes such as self-management skills, knowledge, or symptoms, or in health care use compared with each other or with a standard care group. This may be owing to low health care use at baseline, the lack of structured educational components in the intervention groups, and the lack of integration of the action plan with the technology. TRIAL REGISTRATION: ClinicalTrials.gov NCT03741855; https://clinicaltrials.gov/ct2/show/ NCT03741855.
Assuntos
Doença Pulmonar Obstrutiva Crônica/terapia , Qualidade de Vida/psicologia , Consulta Remota/métodos , Autogestão/métodos , Idoso , Feminino , Humanos , Masculino , TecnologiaRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality worldwide. Reducing the number of COPD exacerbations is an important patient outcome and a major cost-saving approach. Both technology-enabled self-monitoring (SM) and remote monitoring (RM) programs have the potential to reduce exacerbations, but they have not been directly compared with each other. As RM is a more resource-intensive strategy, it is important to understand whether it is more effective than SM. OBJECTIVE: The objective of this study is to evaluate the impact of SM and RM on self-management behaviors, COPD disease knowledge, and respiratory status relative to standard care (SC). METHODS: This was a 3-arm open-label randomized controlled trial comparing SM, RM, and SC completed in an outpatient COPD clinic in a community hospital. Patients in the SM and RM groups recorded their vital signs (oxygen, blood pressure, temperature, and weight) and symptoms with the Cloud DX platform every day and were provided with a COPD action plan. Patients in the RM group also received access to a respiratory therapist (RT). The RT monitored their vital signs intermittently and contacted them when their vitals varied outside of predetermined thresholds. The RT also contacted patients once a week irrespective of their vital signs or symptoms. All patients were randomized to 1 of the 3 groups and assessed at baseline and 3 and 6 months after program initiation. The primary outcome was the Partners in Health scale, which measures self-management skills. Secondary outcomes included the St. George's Respiratory Questionnaire, Bristol COPD Knowledge Questionnaire, COPD Assessment Test, and modified-Medical Research Council Breathlessness Scale. Patients were also asked to self-report on health system usage. RESULTS: A total of 122 patients participated in the study, 40 in the SC, 41 in the SM, and 41 in the RM groups. Out of those patients, 7 in the SC, 5 in the SM, and 6 in the RM groups did not complete the study. There were no significant differences in the rates of study completion among the groups (P=.80). CONCLUSIONS: Both SM and RM have shown promise in reducing acute care utilization and exacerbation frequencies. As far as we are aware, no studies to date have directly compared technology-enabled self-management with RM programs in COPD patients. We believe that this study will be an important contribution to the literature. TRIAL REGISTRATION: ClinicalTrials.gov NCT03741855; https://clinicaltrials.gov/ct2/show/NCT03741855. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/13920.