Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 1783, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997517

RESUMO

Current methods for detecting infections either require a sample collected from an actively infected site, are limited in the number of agents they can query, and/or yield no information on the immune response. Here we present an approach that uses temporally coordinated changes in highly-multiplexed antibody measurements from longitudinal blood samples to monitor infection events at sub-species resolution across the human virome. In a longitudinally-sampled cohort of South African adolescents representing >100 person-years, we identify >650 events across 48 virus species and observe strong epidemic effects, including high-incidence waves of Aichivirus A and the D68 subtype of Enterovirus D earlier than their widespread circulation was appreciated. In separate cohorts of adults who were sampled at higher frequency using self-collected dried blood spots, we show that such events temporally correlate with symptoms and transient inflammatory biomarker elevations, and observe the responding antibodies to persist for periods ranging from ≤1 week to >5 years. Our approach generates a rich view of viral/host dynamics, supporting novel studies in immunology and epidemiology.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Epidemias , Vírus , Adulto , Adolescente , Humanos , Viroma , Anticorpos Antivirais
3.
Nat Protoc ; 18(2): 396-423, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385198

RESUMO

PepSeq is an in vitro platform for building and conducting highly multiplexed proteomic assays against customizable targets by using DNA-barcoded peptides. Starting with a pool of DNA oligonucleotides encoding peptides of interest, this protocol outlines a fully in vitro and massively parallel procedure for synthesizing the encoded peptides and covalently linking each to a corresponding cDNA tag. The resulting libraries of peptide/DNA conjugates can be used for highly multiplexed assays that leverage high-throughput sequencing to profile the binding or enzymatic specificities of proteins of interest. Here, we describe the implementation of PepSeq for fast and cost-effective epitope-level analysis of antibody reactivity across hundreds of thousands of peptides from <1 µl of serum or plasma input. This protocol includes the design of the DNA oligonucleotide library, synthesis of DNA-barcoded peptide constructs, binding of constructs to sample, preparation for sequencing and data analysis. Implemented in this way, PepSeq can be used for a number of applications, including fine-scale mapping of antibody epitopes and determining a subject's pathogen exposure history. The protocol is divided into two main sections: (i) design and synthesis of DNA-barcoded peptide libraries and (ii) use of libraries for highly multiplexed serology. Once oligonucleotide templates are in hand, library synthesis takes 1-2 weeks and can provide enough material for hundreds to thousands of assays. Serological assays can be conducted in 96-well plates and generate sequencing data within a further ~4 d. A suite of software tools, including the PepSIRF package, are made available to facilitate the design of PepSeq libraries and analysis of assay data.


Assuntos
Biblioteca de Peptídeos , Proteômica , DNA/genética , Peptídeos/genética , Oligonucleotídeos/genética , Anticorpos
4.
Cell Rep Med ; 2(1): 100189, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33495758

RESUMO

The SARS-CoV-2 proteome shares regions of conservation with endemic human coronaviruses (CoVs), but it remains unknown to what extent these may be cross-recognized by the antibody response. Here, we study cross-reactivity using a highly multiplexed peptide assay (PepSeq) to generate an epitope-resolved view of IgG reactivity across all human CoVs in both COVID-19 convalescent and negative donors. PepSeq resolves epitopes across the SARS-CoV-2 Spike and Nucleocapsid proteins that are commonly targeted in convalescent donors, including several sites also recognized in some uninfected controls. By comparing patterns of homologous reactivity between CoVs and using targeted antibody-depletion experiments, we demonstrate that SARS-CoV-2 elicits antibodies that cross-recognize pandemic and endemic CoV antigens at two Spike S2 subunit epitopes. We further show that these cross-reactive antibodies preferentially bind endemic homologs. Our findings highlight sites at which the SARS-CoV-2 response appears to be shaped by previous CoV exposures and which have the potential to raise broadly neutralizing responses.

5.
Environ Sci Technol ; 54(24): 16119-16127, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253556

RESUMO

Sulfide accumulation in oil reservoir fluids (souring) from the activity of sulfate-reducing microorganisms (SRM) is of grave concern because of the associated health and facility failure risks. Here, we present an assessment of tungstate as a selective and potent inhibitor of SRM. Dose-response inhibitor experiments were conducted with a number of SRM isolates and enrichments at 30-80 °C and an increase in the effectiveness of tungstate treatment at higher temperatures was observed. To explore mixed inhibitor treatment modes, we tested synergy or antagonism between several inhibitors with tungstate, and found synergism between WO42- and NO2-, while additive effects were observed with ClO4- and NO3-. We also evaluated SRM inhibition by tungstate in advective upflow oil-sand-packed columns. Although 2 mM tungstate was initially sufficient to inhibit sulfidogenesis, subsequent temporal CaWO4 precipitation resulted in loss of the bioavailable inhibitor from solution and a concurrent increase in effluent sulfide. Mixing 4 mM sodium carbonate with the 2 mM tungstate was enough to promote tungstate solubility to reach inhibitory concentrations, without precipitation, and completely inhibit SRM activity. Overall, we demonstrate the effectiveness of tungstate as a potent SRM inhibitor, particularly at higher temperatures, and propose a novel carbonate-tungstate formulation for application to soured oil reservoirs.


Assuntos
Sulfatos , Compostos de Tungstênio , Campos de Petróleo e Gás , Sulfetos
6.
bioRxiv ; 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32743570

RESUMO

A high-resolution understanding of the antibody response to SARS-CoV-2 is important for the design of effective diagnostics, vaccines and therapeutics. However, SARS-CoV-2 antibody epitopes remain largely uncharacterized, and it is unknown whether and how the response may cross-react with related viruses. Here, we use a multiplexed peptide assay ('PepSeq') to generate an epitope-resolved view of reactivity across all human coronaviruses. PepSeq accurately detects SARS-CoV-2 exposure and resolves epitopes across the Spike and Nucleocapsid proteins. Two of these represent recurrent reactivities to conserved, functionally-important sites in the Spike S2 subunit, regions that we show are also targeted for the endemic coronaviruses in pre-pandemic controls. At one of these sites, we demonstrate that the SARS-CoV-2 response strongly and recurrently cross-reacts with the endemic virus hCoV-OC43. Our analyses reveal new diagnostic and therapeutic targets, including a site at which SARS-CoV-2 may recruit common pre-existing antibodies and with the potential for broadly-neutralizing responses.

7.
Front Microbiol ; 10: 654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001230

RESUMO

Hydrogen sulfide is a toxic and corrosive gas, produced by the activity of sulfate-reducing microorganisms (SRM). Owing to the environmental, economic and human-health consequences of sulfide, there is interest in developing specific inhibitors of SRM. Recent studies have identified perchlorate as a promising emerging inhibitor. The aim of this work is to quantitatively dissect the inhibitory dynamics of perchlorate. Sulfidogenic mixed continuous-flow systems were treated with perchlorate. SRM number, sulfide production and community structure were monitored pre-, during and post-treatment. The data generated was compared to a simple mathematical model, where SRM growth slows as a result of inhibition. The experimental data supports the interpretation that perchlorate largely acts to suppress SRM growth rates, rendering planktonic SRM increasingly susceptible to wash-out. Surface-attachment was identified as an important parameter preventing SRM wash-out and thus governing inhibitory dynamics. Our study confirmed the lesser depletion of surface-attached SRM as compared to planktonic SRM during perchlorate treatment. Indirect effects of perchlorate (bio-competitive exclusion of SRM by dissimilatory perchlorate-reducing bacteria, DPRB) were also assayed by amending reactors with DPRB. Indeed, low concentrations of perchlorate coupled with DRPB amendment can drive sulfide concentrations to zero. Further, inhibition in a complex community was compared to that in a pure culture, highlighting similarities and differences between the two scenarios. Finally, we quantified susceptibility to perchlorate across SRM in various culture conditions, showing that prediction of complex behavior in continuous systems from batch results is possible. This study thus provides an overview of the sensitivity of sulfidogenic communities to perchlorate, as well as mechanisms underlying these patterns.

8.
Front Microbiol ; 9: 1575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140256

RESUMO

Hydrogen sulfide production by sulfate reducing bacteria (SRB) is the primary cause of oil reservoir souring. Amending environments with chlorate or perchlorate [collectively denoted (per)chlorate] represents an emerging technology to prevent the onset of souring. Recent studies with perchlorate reducing bacteria (PRB) monocultures demonstrated that they have the innate capability to enzymatically oxidize sulfide, thus PRB may offer an effective means of reversing souring. (Per)chlorate may be effective by (i) direct toxicity to SRB; (ii) competitive exclusion of SRB by PRB; or (iii) reversal of souring through re-oxidation of sulfide by PRB. To determine if (per)chlorate could sweeten a soured column system and assign a quantitative value to each of the mechanisms we treated columns flooded with San Francisco bay water with temporally decreasing amounts (50, 25, and 12.5 mM) of (per)chlorate. Geochemistry and the microbial community structure were monitored and a reactive transport model was developed, Results were compared to columns treated with nitrate or untreated. Souring was reversed by all treatments at 50 mM but nitrate-treated columns began to re-sour when treatment concentrations decreased (25 mM). Re-souring was only observed in (per)chlorate-treated columns when concentrations were decreased to 12.5 mM and the extent of re-souring was less than the control columns. Microbial community analyses indicated treatment-specific community shifts. Nitrate treatment resulted in a distinct community enriched in genera known to perform sulfur cycling metabolisms and genera capable of nitrate reduction. (Per)chlorate treatment enriched for (per)chlorate reducing bacteria. (Per)chlorate treatments only enriched for sulfate reducing organisms when treatment levels were decreased. A reactive transport model of perchlorate treatment was developed and a baseline case simulation demonstrated that the model provided a good fit to the effluent geochemical data. Subsequent simulations teased out the relative role that each of the three perchlorate inhibition mechanisms played during different phases of the experiment. These results indicate that perchlorate addition is an effective strategy for both souring prevention and souring reversal. It provides insight into which organisms are involved, and illuminates the interactive effects of the inhibition mechanisms, further highlighting the versatility of perchlorate as a sweetening agent.

9.
ISME J ; 12(6): 1568-1581, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476141

RESUMO

Dissimilatory perchlorate reduction is an anaerobic respiratory pathway that in communities might be influenced by metabolic interactions. Because the genes for perchlorate reduction are horizontally transferred, previous studies have been unable to identify uncultivated perchlorate-reducing populations. Here we recovered metagenome-assembled genomes from perchlorate-reducing sediment enrichments and employed a manual scaffolding approach to reconstruct gene clusters for perchlorate reduction found within mobile genetic elements. De novo assembly and binning of four enriched communities yielded 48 total draft genomes. In addition to canonical perchlorate reduction gene clusters and taxa, a new type of gene cluster with an alternative perchlorate reductase was identified. Phylogenetic analysis indicated past exchange between these gene clusters, and the presence of plasmids with either gene cluster shows that the potential for gene transfer via plasmid persisted throughout enrichment. However, a majority of genomes in each community lacked perchlorate reduction genes. Putative chlorate-reducing or sulfur-reducing populations were dominant in most communities, supporting the hypothesis that metabolic interactions might result from perchlorate reduction intermediates and byproducts. Other populations included a novel phylum-level lineage (Ca. Muirbacteria) and epibiotic prokaryotes with no known role in perchlorate reduction. These results reveal unexpected genetic diversity, suggest that perchlorate-reducing communities involve substantial metabolic interactions, and encourage expanded strategies to further understand the evolution and ecology of this metabolism.


Assuntos
Metagenoma , Metagenômica , Oxirredutases/genética , Percloratos/química , Cloratos/química , Cloro/química , Metabolismo Energético , Variação Genética , Funções Verossimilhança , Família Multigênica , Oxirredução , Estresse Oxidativo , Filogenia , Plasmídeos/metabolismo , Software
10.
Proc Natl Acad Sci U S A ; 115(1): E92-E101, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29183985

RESUMO

Dissimilatory phosphite oxidation (DPO), a microbial metabolism by which phosphite (HPO32-) is oxidized to phosphate (PO43-), is the most energetically favorable chemotrophic electron-donating process known. Only one DPO organism has been described to date, and little is known about the environmental relevance of this metabolism. In this study, we used 16S rRNA gene community analysis and genome-resolved metagenomics to characterize anaerobic wastewater treatment sludge enrichments performing DPO coupled to CO2 reduction. We identified an uncultivated DPO bacterium, Candidatus Phosphitivorax (Ca. P.) anaerolimi strain Phox-21, that belongs to candidate order GW-28 within the Deltaproteobacteria, which has no known cultured isolates. Genes for phosphite oxidation and for CO2 reduction to formate were found in the genome of Ca. P. anaerolimi, but it appears to lack any of the known natural carbon fixation pathways. These observations led us to propose a metabolic model for autotrophic growth by Ca. P. anaerolimi whereby DPO drives CO2 reduction to formate, which is then assimilated into biomass via the reductive glycine pathway.


Assuntos
Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico/fisiologia , Deltaproteobacteria , Metagenômica , Fosfitos/metabolismo , Esgotos/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Oxirredução , Purificação da Água
11.
Appl Microbiol Biotechnol ; 100(22): 9719-9732, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27596621

RESUMO

The recent recognition of the environmental prevalence of perchlorate and its discovery on Mars, Earth's moon, and in meteorites, in addition to its novel application to controlling oil reservoir sulfidogenesis, has resulted in a renewed interest in this exotic ion and its associated microbiology. However, while plentiful data exists on freshwater perchlorate respiring organisms, information on their halophilic counterparts and microbial communities is scarce. Here, we investigated the temporal evolving structure of perchlorate respiring communities under a range of NaCl concentrations (1, 3, 5, 7, and 10 % wt/vol) using marine sediment amended with acetate and perchlorate. In general, perchlorate consumption rates were inversely proportional to NaCl concentration with the most rapid rate observed at 1 % NaCl. At 10 % NaCl, no perchlorate removal was observed. Transcriptional analysis of the 16S rRNA gene indicated that salinity impacted microbial community structure and the most active members were in families Rhodocyclaceae (1 and 3 % NaCl), Pseudomonadaceae (1 NaCl), Campylobacteraceae (1, 5, and 7 % NaCl), Sedimenticolaceae (3 % NaCl), Desulfuromonadaceae (5 and 7 % NaCl), Pelobacteraceae (5 % NaCl), Helicobacteraceae (5 and 7 % NaCl), and V1B07b93 (7 %). Novel isolates of genera Sedimenticola, Marinobacter, Denitromonas, Azoarcus, and Pseudomonas were obtained and their perchlorate respiring capacity confirmed. Although the obligate anaerobic, sulfur-reducing Desulfuromonadaceae species were dominant at 5 and 7 % NaCl, their enrichment may result from biological sulfur cycling, ensuing from the innate ability of DPRB to oxidize sulfide. Additionally, our results demonstrated enrichment of an archaeon of phylum Parvarchaeota at 5 % NaCl. To date, this phylum has only been described in metagenomic experiments of acid mine drainage and is unexpected in a marine community. These studies identify the intrinsic capacity of marine systems to respire perchlorate and significantly expand the known diversity of organisms capable of this novel metabolism.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Percloratos/metabolismo , Salinidade , Anaerobiose , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
12.
Microbiome ; 3: 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830022

RESUMO

BACKGROUND: Termites and their microbial gut symbionts are major recyclers of lignocellulosic biomass. This important symbiosis is obligate but relatively open and more complex in comparison to other well-known insect symbioses such as the strict vertical transmission of Buchnera in aphids. The relative roles of vertical inheritance and environmental factors such as diet in shaping the termite gut microbiome are not well understood. RESULTS: The gut microbiomes of 66 specimens representing seven higher and nine lower termite genera collected in Australia and North America were profiled by small subunit (SSU) rRNA amplicon pyrosequencing. These represent the first reported culture-independent gut microbiome data for three higher termite genera: Tenuirostritermes, Drepanotermes, and Gnathamitermes; and two lower termite genera: Marginitermes and Porotermes. Consistent with previous studies, bacteria comprise the largest fraction of termite gut symbionts, of which 11 phylotypes (6 Treponema, 1 Desulfarculus-like, 1 Desulfovibrio, 1 Anaerovorax-like, 1 Sporobacter-like, and 1 Pirellula-like) were widespread occurring in ≥50% of collected specimens. Archaea are generally considered to comprise only a minority of the termite gut microbiota (<3%); however, archaeal relative abundance was substantially higher and variable in a number of specimens including Macrognathotermes, Coptotermes, Schedorhinotermes, Porotermes, and Mastotermes (representing up to 54% of amplicon reads). A ciliate related to Clevelandella was detected in low abundance in Gnathamitermes indicating that protists were either reacquired after protists loss in higher termites or persisted in low numbers across this transition. Phylogenetic analyses of the bacterial communities indicate that vertical inheritance is the primary force shaping termite gut microbiota. The effect of diet is secondary and appears to influence the relative abundance, but not membership, of the gut communities. CONCLUSIONS: Vertical inheritance is the primary force shaping the termite gut microbiome indicating that species are successfully and faithfully passed from one generation to the next via trophallaxis or coprophagy. Changes in relative abundance can occur on shorter time scales and appear to be an adaptive mechanism for dietary fluctuations.

13.
J Food Prot ; 71(8): 1696-700, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18724767

RESUMO

Noroviruses (NORs) are the most common cause of viral gastroenteritis outbreaks. Outbreaks are often associated with the consumption of contaminated oysters and generally occur between the months of November and March, when oysters produce the highest levels of glycogen. Oyster glycogen has been proposed as playing a role in NOR accumulation. Recent research indicates that histo-blood group antigens (HBGAs) function as viral receptors on human gastrointestinal cells. In this study, oyster glycogen was tested to determine whether it contains HBGA-like molecules and whether it plays a role in NOR binding. The correlation between the amount of HBGA expression and NOR binding also was measured. We also tested whether seasonal changes affected HBGA expression and binding of recombinant NORs. The results indicate that recombinant NOR binding is highly correlated with HBGA expression in Virginica (Crassostrea virginica), Pacific (Crassostrea gigas), and Kumamato (Crassostrea sikamea) oysters, but the association does not have a seasonal pattern. No obvious trend in either HBGA expression or recombinant NOR binding by month was noted. A significant increase in recombinant NOR binding was observed in Virginica and Pacific oysters in a season not generally associated with NOR gastroenteritis outbreaks. A significant increase in HBGA expression also was observed for Pacific and Virginica oysters in the same season. Paradoxically, HBGA expression and NOR binding both were higher in oysters produced in the non-NOR gastroenteritis season (April through October) than in those produced in the NOR gastroenteritis season (November through March), suggesting that seasonal NOR gastroenteritis outbreaks are not associated with high levels of HBGA expression or NOR binding.


Assuntos
Sistema ABO de Grupos Sanguíneos/fisiologia , Contaminação de Alimentos/análise , Trato Gastrointestinal/virologia , Norovirus/fisiologia , Ostreidae/virologia , Frutos do Mar/virologia , Animais , Antígenos de Grupos Sanguíneos , Gastroenterite/epidemiologia , Gastroenterite/etiologia , Gastroenterite/virologia , Glicogênio/metabolismo , Humanos , Norovirus/metabolismo , Receptores Virais/fisiologia , Estações do Ano
14.
J Food Prot ; 70(9): 2140-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17900094

RESUMO

Outbreaks of norovirus (NoV) gastroenteritis are often associated with the consumption of contaminated bivalves such as oysters, clams, and mussels. Crassostrea virginica oysters trap the Norwalk virus through the intestinal type A-like histo-blood group antigen (HBGA), a possible mechanism of bioaccumulation responsible for NoV outbreaks. In this study, we tested binding and inhibition of binding in three species of oysters and one species each of clams and mussels with NoVs, representing four HBGA receptor-binding patterns. Our results indicated that all three oyster species expressed type A- and type O-like HBGA in their gastrointestinal tissue. Similar type A-like antigens also were found in mussels and clams, but only some of them express the O-like antigens. Both genogroups I and II recombinant norovirus-like particles (rNoVLPs) bound to gastrointestinal homogenates from oysters, mussels, and clams, and the binding was inhibited by preincubation of the rNoVLP with HBGA-specific monoclonal antibodies or with types A or O HBGA-positive human saliva. Co-localization of rNoVLPs and HBGA on gastrointestinal epithelial cells of oysters, mussels, and clams was also observed by immunofluorescent microscopy. Finally, the binding of rNoVLP to oyster gastrointestinal homogenates was inhibited by incubation with HBGA analogs. This study significantly expands our understanding that multiple HBGAs are expressed in oyster, mussel, and clam gastrointestinal tissues, which could be the major mechanism of bioaccumulation of NoVs by these bivalves. Our results also suggest that this bioaccumulation could be reversed by incubation with HBGA analogs, a possible important new strategy for depuration.


Assuntos
Sistema ABO de Grupos Sanguíneos , Trato Gastrointestinal/virologia , Norovirus/fisiologia , Receptores Virais/fisiologia , Frutos do Mar/virologia , Sistema ABO de Grupos Sanguíneos/fisiologia , Animais , Anticorpos Monoclonais , Sítios de Ligação , Bivalves/virologia , Antígenos de Grupos Sanguíneos , Células Epiteliais , Contaminação de Alimentos , Trato Gastrointestinal/citologia , Humanos , Norovirus/metabolismo , Ostreidae/virologia , Especificidade da Espécie
15.
Res Vet Sci ; 83(3): 410-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17379264

RESUMO

Histo-blood group antigens (HBGA) expressed on cells in the human GI tract have been shown to function as receptors for noroviruses. In concordance with earlier reports (Backer et al., 1997; Yamamoto and Yamamoto, 2001), this study found that individual pigs are either HBGA type A positive or type H1 (type O) positive. Recombinant norovirus like particles from a genogroup I (rNVLP) or three genogroup II (rMOH, rVA207, and rVA387) strains bound to plates coated with pig gastro-intestinal washings with similar binding patterns to humans. The binding of human norovirus like particles was inhibited by pre-incubating the wells with MAbs specific for either type A or type H1 HBGA, or by the presence of free HBGAs from human saliva. Co-localization of rNVLP and corresponding HBGA on epithelial cells of pig gastro-intestinal tissue (PGIT) was also observed. These findings suggest that rNVLP binds to HBGAs expressed on PGIT epithelial cells. This is the first report of the specific binding of human rNVLP to HBGAs in epithelial cells of pig gastrointestinal tissue. It highlights the importance of further study of human norovirus incidence and potential infection and residence in non-human animal hosts and suggests the possibility that norovirus may be a zoonotic pathogen.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Duodeno/citologia , Mucosa Intestinal/citologia , Norovirus/metabolismo , Suínos , Animais , Duodeno/virologia , Células Epiteliais/virologia , Mucosa Intestinal/virologia
16.
FEMS Microbiol Ecol ; 57(2): 239-50, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16867142

RESUMO

A large number of studies have investigated gastrointestinal microbiota and changes in the gastrointestinal community. However, a concern in these studies is how best to assess changes in gastrointestinal community structure. This paper presents two different human trials where the fecal terminal restriction fragment length polymorphism data sets were analyzed to search for treatment effects. Principle components analysis and cluster analysis based on grouped data are compared with analysis of data by subject using distance coefficients. Comparison with baseline within an individual before grouping by treatment provided a clearer indication of treatment effects than did an evaluation of data grouped before analysis. In addition, a large within-subject sample size and multiple baseline samples are necessary to accurately analyze treatment effects.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Impressões Digitais de DNA , Intestinos/microbiologia , Probióticos/administração & dosagem , Adulto , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/genética , Método Duplo-Cego , Fezes/microbiologia , Humanos , Placebos , Polimorfismo de Fragmento de Restrição , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA