Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114475, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996072

RESUMO

Endomucin (EMCN) currently represents the only hematopoietic stem cell (HSC) marker expressed by both murine and human HSCs. Here, we report that EMCN+ long-term repopulating HSCs (LT-HSCs; CD150+CD48-LSK) have a higher long-term multi-lineage repopulating capacity compared to EMCN- LT-HSCs. Cell cycle analyses and transcriptional profiling demonstrated that EMCN+ LT-HSCs were more quiescent compared to EMCN- LT-HSCs. Emcn-/- and Emcn+/+ mice displayed comparable steady-state hematopoiesis, as well as frequencies, transcriptional programs, and long-term multi-lineage repopulating capacity of their LT-HSCs. Complementary functional analyses further revealed increased cell cycle entry upon treatment with 5-fluorouracil and reduced granulocyte colony-stimulating factor (GCSF) mobilization of Emcn-/- LT-HSCs, demonstrating that EMCN expression by LT-HSCs associates with quiescence in response to hematopoietic stress and is indispensable for effective LT-HSC mobilization. Transplantation of wild-type bone marrow cells into Emcn-/- or Emcn+/+ recipients demonstrated that EMCN is essential for endothelial cell-dependent maintenance/self-renewal of the LT-HSC pool and sustained blood cell production post-transplant.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento Celular , Fluoruracila/farmacologia , Humanos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Ciclo Celular , Células Endoteliais/metabolismo
2.
Mol Cancer Ther ; 21(5): 703-714, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247918

RESUMO

Currently, the majority of patients with acute myeloid leukemia (AML) still die of their disease due to primary resistance or relapse toward conventional reactive oxygen species (ROS)- and DNA damage-inducing chemotherapy regimens. Herein, we explored the therapeutic potential to enhance chemotherapy response in AML, by targeting the ROS scavenger enzyme MutT homolog 1 (MTH1, NUDT1), which protects cellular integrity through prevention of fatal chemotherapy-induced oxidative DNA damage. We demonstrate that MTH1 is a potential druggable target expressed by the majority of patients with AML and the inv(16)/KITD816Y AML mouse model mimicking the genetics of patients with AML exhibiting poor response to standard chemotherapy (i.e., anthracycline & cytarabine). Strikingly, combinatorial treatment of inv(16)/KITD816Y AML cells with the MTH1 inhibitor TH1579 and ROS- and DNA damage-inducing standard chemotherapy induced growth arrest and incorporated oxidized nucleotides into DNA leading to significantly increased DNA damage. Consistently, TH1579 and chemotherapy synergistically inhibited growth of clonogenic inv(16)/KITD816Y AML cells without substantially inhibiting normal clonogenic bone marrow cells. In addition, combinatorial treatment of inv(16)/KITD816Y AML mice with TH1579 and chemotherapy significantly reduced AML burden and prolonged survival compared with untreated or single treated mice. In conclusion, our study provides a rationale for future clinical studies combining standard AML chemotherapy with TH1579 to boost standard chemotherapy response in patients with AML. Moreover, other cancer entities treated with ROS- and DNA damage-inducing chemo- or radiotherapies might benefit therapeutically from complementary treatment with TH1579.


Assuntos
Leucemia Mieloide Aguda , Nucleotídeos , Animais , Dano ao DNA , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Estresse Oxidativo , Pirimidinas , Espécies Reativas de Oxigênio , Saneamento
3.
Leukemia ; 35(7): 2030-2042, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33299144

RESUMO

Most AML patients exhibit mutational activation of the PI3K/AKT signaling pathway, which promotes downstream effects including growth, survival, DNA repair, and resistance to chemotherapy. Herein we demonstrate that the inv(16)/KITD816Y AML mouse model exhibits constitutive activation of PI3K/AKT signaling, which was enhanced by chemotherapy-induced DNA damage through DNA-PK-dependent AKT phosphorylation. Strikingly, inhibitors of either PI3K or DNA-PK markedly reduced chemotherapy-induced AKT phosphorylation and signaling leading to increased DNA damage and apoptosis of inv(16)/KITD816Y AML cells in response to chemotherapy. Consistently, combinations of chemotherapy and PI3K or DNA-PK inhibitors synergistically inhibited growth and survival of clonogenic AML cells without substantially inhibiting normal clonogenic bone marrow cells. Moreover, treatment of inv(16)/KITD816Y AML mice with combinations of chemotherapy and PI3K or DNA-PK inhibitors significantly prolonged survival compared to untreated/single-treated mice. Mechanistically, our findings implicate that constitutive activation of PI3K/AKT signaling driven by mutant KIT, and potentially other mutational activators such as FLT3 and RAS, cooperates with chemotherapy-induced DNA-PK-dependent activation of AKT to promote survival, DNA repair, and chemotherapy resistance in AML. Hence, our study provides a rationale to select AML patients exhibiting constitutive PI3K/AKT activation for simultaneous treatment with chemotherapy and inhibitors of DNA-PK and PI3K to improve chemotherapy response and clinical outcome.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA