Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136023

RESUMO

Electroanatomical mapping is a method for creating a model of the electrophysiology of the human heart. Medical professionals routinely locate and ablate the site of origin of cardiac arrhythmias with invasive catheterization. Non-invasive localization takes the form of electrocardiographic (ECG) or magnetocardiographic (MCG) imaging, where the goal is to reconstruct the electrical activity of the human heart. Non-invasive alternatives to catheter electroanatomical mapping would reduce patients' risks and open new venues for treatment planning and prevention. This work introduces a new system state-based method for estimating the electrical activity of the human heart from MCG measurements. Our model enables arbitrary propagation paths and velocities. A Kalman filter optimally estimates the current densities under the given measurements and model parameters. In an outer optimization loop, these model parameters are then optimized via gradient descent. This paper aims to establish the foundation for future research by providing a detailed mathematical explanation of the algorithm. We demonstrate the feasibility of our method through a simplified one-layer simulation. Our results show that the algorithm can learn the propagation paths from the magnetic measurements. A threshold-based segmentation into healthy and pathological tissue yields a DICE score of 0.84, a recall of 0.77, and a precision of 0.93.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA