Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(9)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39118367

RESUMO

Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.


Assuntos
Moorella , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Moorella/metabolismo , Moorella/genética , Moorella/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Fermentação , Monóxido de Carbono/metabolismo , Microbiologia do Solo , Acetatos/metabolismo , Biocatálise , DNA Bacteriano/genética
2.
Front Microbiol ; 15: 1426882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021630

RESUMO

Due to their metabolic versatility in substrate utilization, acetogenic bacteria represent industrially significant production platforms for biotechnological applications such as syngas fermentation, microbial electrosynthesis or transformation of one-carbon substrates. However, acetogenic strains from the genera Terrisporobacter and Acetoanaerobium remained poorly investigated for biotechnological applications. We report the isolation and characterization of four acetogenic Terrisporobacter strains and one Acetoanaerobium strain. All Terrisporobacter isolates showed a characteristic growth pattern under a H2 + CO2 atmosphere. An initial heterotrophic growth phase was followed by a stationary growth phase, where continuous acetate production was indicative of H2-dependent acetogenesis. One of the novel Terrisporobacter isolates obtained from compost (strain COMT) additionally produced ethanol besides acetate in the stationary growth phase in H2-supplemented cultures. Genomic and physiological characterizations showed that strain COMT represented a novel Terrisporobacter species and the name Terrisporobacter vanillatitrophus is proposed (=DSM 116160T = CCOS 2104T). Phylogenomic analysis of the novel isolates and reference strains implied the reclassification of the T. petrolearius/T. hibernicus phylogenomic cluster to the species T. petrolearius and of the A. noterae/A. sticklandii phylogenomic cluster to the species A. sticklandii. Furthermore, we provide first insights into active prophages of acetogens from the genera Terrisporobacter and Acetoanaerobium.

3.
Front Microbiol ; 14: 1238737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649635

RESUMO

Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms such as cyanobacteria, which are engineered to synthesize valuable products directly from CO2 and sunlight. For example, strains of the model organism Synechocystis sp. PCC 6803 have been generated to produce ethanol. Here, we performed a study to prove the hypothesis that carbon flux in the direction of pyruvate is one bottleneck to achieve high ethanol titers in cyanobacteria. Ethanol-producing strains of the cyanobacterium Synechocystis sp. PCC 6803 were generated that bear mutation in the gene pirC aiming to increase carbon flux towards pyruvate. The strains were cultivated at different nitrogen or carbon conditions and the ethanol production was analysed. Generally, a clear correlation between growth rate and ethanol production was found. The mutation of pirC, however, had only a positive impact on ethanol titers under nitrogen depletion. The increase in ethanol was accompanied by elevated pyruvate and lowered glycogen levels indicating that the absence of pirC indeed increased carbon partitioning towards lower glycolysis. Metabolome analysis revealed that this change in carbon flow had also a marked impact on the overall primary metabolism in Synechocystis sp. PCC 6803. Deletion of pirC improved ethanol production under specific conditions supporting the notion that a better understanding of regulatory mechanisms involved in cyanobacterial carbon partitioning is needed to engineer more productive cyanobacterial strains.

4.
ALTEX ; 34(2): 253-266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27725990

RESUMO

Surgical implantation of a biomaterial triggers foreign-body-induced fibrous encapsulation. Two major mechanisms of this complex physiological process are (I) chemotaxis of fibroblasts from surrounding tissue to the implant region, followed by (II) tissue remodeling. As an alternative to animal studies, we here propose a process-aligned in vitro test platform to investigate the material dependency of fibroblast chemotaxis and tissue remodeling mediated by material-resident macrophages. Embedded in a biomimetic three-dimensional collagen hydrogel, chemotaxis of fibroblasts in the direction of macrophage-material-conditioned cell culture supernatant was analyzed by live cell imaging. A combination of statistical analysis with a complementary parameterized random walk model allowed quantitative and qualitative characterization of the cellular walk process. We thereby identified an increasing macrophage-mediated chemotactic potential ranking of biomaterials from glass over polytetrafluorethylene to titanium. To address long-term effects of bio-material-resident macrophages on fibroblasts in a three-dimensional microenvironment, we further studied tissue remodeling by applying macrophage-material-conditioned medium on fibrous in vitro tissue models. A high correlation of the in vitro tissue model to state of the art in vivo study data was found. Titanium exhibited a significantly lower tissue remodeling capacity compared to polytetrafluorethylene. With this approach, we identified a material dependency of both chemotaxis and tissue remodeling processes, strengthening knowledge on their specific contribution to the foreign body reaction.


Assuntos
Quimiotaxia/fisiologia , Reação a Corpo Estranho/imunologia , Técnicas In Vitro , Alternativas aos Testes com Animais , Animais , Materiais Biocompatíveis , Fibroblastos/citologia , Fibroblastos/imunologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Modelos Estatísticos
5.
ALTEX ; 33(4): 415-422, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27180196

RESUMO

Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.


Assuntos
Alternativas aos Testes com Animais/métodos , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Jejuno/irrigação sanguínea , Queratinócitos/fisiologia , Animais , Células Cultivadas , Derme/citologia , Epiderme , Humanos , Pele , Suínos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA