Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 614(7946): 153-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697829

RESUMO

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.


Assuntos
Proteínas Fúngicas , Mitocôndrias , Proteínas Mitocondriais , Transporte Proteico , Proteoma , Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Respiração Celular , Ribossomos , Conjuntos de Dados como Assunto
2.
Biochem J ; 478(16): 3125-3143, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436539

RESUMO

Mitochondria import about 1000 proteins that are produced as precursors on cytosolic ribosomes. Defects in mitochondrial protein import result in the accumulation of non-imported precursor proteins and proteotoxic stress. The cell is equipped with different quality control mechanisms to monitor protein transport into mitochondria. First, molecular chaperones guide unfolded proteins to mitochondria and deliver non-imported proteins to proteasomal degradation. Second, quality control factors remove translocation stalled precursor proteins from protein translocases. Third, protein translocases monitor protein sorting to mitochondrial subcompartments. Fourth, AAA proteases of the mitochondrial subcompartments remove mislocalized or unassembled proteins. Finally, impaired efficiency of protein transport is an important sensor for mitochondrial dysfunction and causes the induction of cellular stress responses, which could eventually result in the removal of the defective mitochondria by mitophagy. In this review, we summarize our current understanding of quality control mechanisms that govern mitochondrial protein transport.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia , Precursores de Proteínas/metabolismo , Animais , Humanos , Modelos Biológicos , Transporte Proteico , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA