Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134065

RESUMO

Narrowing the communication and knowledge gap between producers and users of scientific data is a longstanding problem in ecological conservation and land management. Decision support tools (DSTs), including websites or interactive web applications, provide platforms that can help bridge this gap. DSTs can most effectively disseminate and translate research results when producers and users collaboratively and iteratively design content and features. One data resource seldom incorporated into DSTs are species distribution models (SDMs), which can produce spatial predictions of habitat suitability. Outputs from SDMs can inform management decisions, but their complexity and inaccessibility can limit their use by resource managers or policy makers. To overcome these limitations, we present the Invasive Species Habitat Tool (INHABIT), a novel, web-based DST built with R Shiny to display spatial predictions and tabular summaries of habitat suitability from SDMs for invasive plants across the contiguous United States. INHABIT provides actionable science to support the prevention and management of invasive species. Two case studies demonstrate the important role of end user feedback in confirming INHABIT's credibility, utility, and relevance.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies Introduzidas/estatística & dados numéricos , Dispersão Vegetal/fisiologia , Tomada de Decisões , Técnicas de Apoio para a Decisão , Ecossistema , Internet , Plantas/classificação , Software , Estados Unidos
2.
PLoS One ; 15(3): e0229253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150554

RESUMO

Predictions of habitat suitability for invasive plant species can guide risk assessments at regional and national scales and inform early detection and rapid-response strategies at local scales. We present a general approach to invasive species modeling and mapping that meets objectives at multiple scales. Our methodology is designed to balance trade-offs between developing highly customized models for few species versus fitting non-specific and generic models for numerous species. We developed a national library of environmental variables known to physiologically limit plant distributions and relied on human input based on natural history knowledge to further narrow the variable set for each species before developing habitat suitability models. To ensure efficiency, we used largely automated modeling approaches and human input only at key junctures. We explore and present uncertainty by using two alternative sources of background samples, including five statistical algorithms, and constructing model ensembles. We demonstrate the use and efficiency of the Software for Assisted Habitat Modeling [SAHM 2.1.2], a package in VisTrails, which performs the majority of the modeling analyses. Our workflow includes solicitation of expert feedback on model outputs such as spatial prediction results and variable response curves, and iterative improvement based on new data availability and directed field validation of initial model results. We highlight the utility of the models for decision-making at regional and local scales with case studies of two plant species that invade natural areas: fountain grass (Pennisetum setaceum) and goutweed (Aegopodium podagraria). By balancing model automation with human intervention, we can efficiently provide land managers with mapped predicted distributions for multiple invasive species to inform decisions across spatial scales.


Assuntos
Apiaceae/crescimento & desenvolvimento , Espécies Introduzidas , Pennisetum/crescimento & desenvolvimento , Algoritmos , Automação , Conservação dos Recursos Naturais , Técnicas de Apoio para a Decisão , Humanos , Modelos Estatísticos , Medição de Risco , Fluxo de Trabalho
3.
Data Brief ; 15: 724-727, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124098

RESUMO

This dataset provides a shapefile containing approximately 3500 polygons with the location, extent, size, and year of clearcut harvest events occurring between 1984 and 2015 in forested areas of the northern Colorado, Landsat WRS-2 scene Path 034, Row 032. Harvest events were modeled and mapped using a 32 year time series of Landsat imagery, the LandTrendr algorithm, and ancillary datasets. The dataset also conveys information on the elevation, aspect, ownership, distance to roads, and the watershed where each harvest event occurred.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA