Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555027

RESUMO

Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, in vitro approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl- secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1ß, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.

2.
Methods Mol Biol ; 2650: 17-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310620

RESUMO

Immunofluorescence imaging enables visualization of a wide range of molecules in diverse cells and tissues. Determining the localization and endogenous protein levels in cells using immunostaining can be highly informative for researchers studying cell structure and function. The small intestinal epithelium is composed of numerous cell types including absorptive enterocytes, mucus-producing goblet cells, lysozyme positive Paneth cells, proliferative stem cells, chemosensing tuft cells, and hormone-producing enteroendocrine cells. Each cell type in the small intestine has unique functions and structures that are critical for maintaining intestinal homeostasis and identifiable by immunofluorescence labeling. In this chapter we provide a detailed protocol and representative images of immunostaining of paraffin-embedded mouse small intestinal tissue. The method highlights antibodies and micrographs that identify differentiated cell types. These details are important because quality immunofluorescence imaging can provide novel insights and a greater understanding of healthy and disease states.


Assuntos
Células Epiteliais , Intestinos , Animais , Camundongos , Diferenciação Celular , Células Enteroendócrinas , Microscopia de Fluorescência
3.
PLoS One ; 18(1): e0280428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662766

RESUMO

Carcinoma of the endometrium of the uterus is the most common female pelvic malignancy. Although uterine corpus endometrial cancer (UCEC) has a favorable prognosis if removed early, patients with advanced tumor stages have a low survival rate. These facts highlight the importance of understanding UCEC biology. Computational analysis of RNA-sequencing data from UCEC patients revealed that the molecular motor Myosin Vb (MYO5B) was elevated in the beginning stages of UCEC and occurred in all patients regardless of tumor stage, tumor type, age, menopause status or ethnicity. Although several mutations were identified in the MYO5B gene in UCEC patients, these mutations did not correlate with mRNA expression. Examination of MYO5B methylation revealed that UCEC patients had undermethylated MYO5B and undermethylation was positively correlated with increased mRNA and protein levels. Immunostaining confirmed elevated levels of apical MYO5B in UCEC patients compared to adjacent tissue. UCEC patients with high expressing MYO5B tumors had far worse prognosis than UCEC patients with low expressing MYO5B tumors, as reflected by survival curves. Metabolic pathway analysis revealed significant alterations in metabolism pathways in UCE patients and key metabolism genes were positively correlated with MYO5B mRNA. These data provide the first evidence that MYO5B may participate in UCEC tumor development.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , Humanos , Feminino , Neoplasias do Endométrio/patologia , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia Computacional , Miosinas
4.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G501-G510, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218265

RESUMO

Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.


Assuntos
Enterócitos , Microvilosidades , Miosina Tipo V , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo
5.
Curr Opin Cell Biol ; 77: 102117, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35870341

RESUMO

Myosins are a class of motors that participate in a wide variety of cellular functions including organelle transport, cell adhesion, endocytosis and exocytosis, movement of RNA, and cell motility. Among the emerging roles for myosins is regulation of the assembly, morphology, and function of actin protrusions such as microvilli. The intestine harbors an elaborate apical membrane composed of highly organized microvilli. Microvilli assembly and function are intricately tied to several myosins including Myosin 1a, non-muscle Myosin 2c, Myosin 5b, Myosin 6, and Myosin 7b. Here, we review the research progress made in our understanding of myosin mediated apical assembly.


Assuntos
Intestinos , Miosinas , Actinas/metabolismo , Membrana Celular/metabolismo , Microvilosidades/metabolismo , Miosinas/metabolismo
6.
Front Physiol ; 13: 880024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685287

RESUMO

Background: The gastrointestinal tract has been speculated to serve as a reservoir for Acinetobacter, however little is known about the ecological fitness of Acinetobacter strains in the gut. Likewise, not much is known about the ability of Acinetobacter to consume dietary, or host derived nutrients or their capacity to modulate host gene expression. Given the increasing prevalence of Acinetobacter in the clinical setting, we sought to characterize how A. calcoaceticus responds to gut-related stressors and identify potential microbe-host interactions. Materials and Methods: To accomplish these aims, we grew clinical isolates and commercially available strains of A. calcoaceticus in minimal media with different levels of pH, osmolarity, ethanol and hydrogen peroxide. Utilization of nutrients was examined using Biolog phenotypic microarrays. To examine the interactions of A. calcoaceticus with the host, inverted murine organoids where the apical membrane is exposed to bacteria, were incubated with live A. calcoaceticus, and gene expression was examined by qPCR. Results: All strains grew modestly at pH 6, 5 and 4; indicating that these strains could tolerate passage through the gastrointestinal tract. All strains had robust growth in 0.1 and 0.5 M NaCl concentrations which mirror the small intestine, but differences were observed between strains in response to 1 M NaCl. Additionally, all strains tolerated up to 5% ethanol and 0.1% hydrogen peroxide. Biolog phenotypic microarrays revealed that A. calcoaceticus strains could use a range of nutrient sources, including monosaccharides, disaccharides, polymers, glycosides, acids, and amino acids. Interestingly, the commercially available A. calcoaceticus strains and one clinical isolate stimulated the pro-inflammatory cytokines Tnf, Kc, and Mcp-1 while all strains suppressed Muc13 and Muc2. Conclusion: Collectively, these data demonstrate that A. calcoaceticus is well adapted to dealing with environmental stressors of the gastrointestinal system. This data also points to the potential for Acinetobacter to influence the gut epithelium.

7.
Gut ; 71(6): 1068-1077, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34497145

RESUMO

OBJECTIVE: Metaplasia arises from differentiated cell types in response to injury and is considered a precursor in many cancers. Heterogeneous cell lineages are present in the reparative metaplastic mucosa with response to injury, including foveolar cells, proliferating cells and spasmolytic polypeptide-expressing metaplasia (SPEM) cells, a key metaplastic cell population. Zymogen-secreting chief cells are long-lived cells in the stomach mucosa and have been considered the origin of SPEM cells; however, a conflicting paradigm has proposed isthmal progenitor cells as an origin for SPEM. DESIGN: Gastric intrinsic factor (GIF) is a stomach tissue-specific gene and exhibits protein expression unique to mature mouse chief cells. We generated a novel chief cell-specific driver mouse allele, GIF-rtTA. GIF-GFP reporter mice were used to validate specificity of GIF-rtTA driver in chief cells. GIF-Cre-RnTnG mice were used to perform lineage tracing during homoeostasis and acute metaplasia development. L635 treatment was used to induce acute mucosal injury and coimmunofluorescence staining was performed for various gastric lineage markers. RESULTS: We demonstrated that mature chief cells, rather than isthmal progenitor cells, serve as the predominant origin of SPEM cells during the metaplastic process after acute mucosal injury. Furthermore, we observed long-term label-retaining chief cells at 1 year after the GFP labelling in chief cells. However, only a very small subset of the long-term label-retaining chief cells displayed the reprogramming ability in homoeostasis. In contrast, we identified chief cell-originating SPEM cells as contributing to lineages within foveolar cell hyperplasia in response to the acute mucosal injury. CONCLUSION: Our study provides pivotal evidence for cell plasticity and lineage contributions from differentiated gastric chief cells during acute metaplasia development.


Assuntos
Celulas Principais Gástricas , Neoplasias Gástricas , Animais , Plasticidade Celular , Celulas Principais Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Humanos , Metaplasia/metabolismo , Camundongos , Estômago , Neoplasias Gástricas/metabolismo
8.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34197342

RESUMO

Functional loss of myosin Vb (MYO5B) induces a variety of deficits in intestinal epithelial cell function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). The impact of MYO5B loss on differentiated cell lineage choice has not been investigated. We quantified the populations of differentiated epithelial cells in tamoxifen-induced, epithelial cell-specific MYO5B-knockout (VilCreERT2 Myo5bfl/fl) mice utilizing digital image analysis. Consistent with our RNA-sequencing data, MYO5B loss induced a reduction in tuft cells in vivo and in organoid cultures. Paneth cells were significantly increased by MYO5B deficiency along with expansion of the progenitor cell zone. We further investigated the effect of lysophosphatidic acid (LPA) signaling on epithelial cell differentiation. Intraperitoneal LPA significantly increased tuft cell populations in both control and MYO5B-knockout mice. Transcripts for Wnt ligands were significantly downregulated by MYO5B loss in intestinal epithelial cells, whereas Notch signaling molecules were unchanged. Additionally, treatment with the Notch inhibitor dibenzazepine (DBZ) restored the populations of secretory cells, suggesting that the Notch pathway is maintained in MYO5B-deficient intestine. MYO5B loss likely impairs progenitor cell differentiation in the small intestine in vivo and in vitro, partially mediated by Wnt/Notch imbalance. Notch inhibition and/or LPA treatment may represent an effective therapeutic approach for treatment of MVID.


Assuntos
Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Miosina Tipo V/deficiência , Receptores Notch/metabolismo , Via de Sinalização Wnt/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Dibenzazepinas/farmacologia , Modelos Animais de Doenças , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Jejuno/citologia , Jejuno/efeitos dos fármacos , Jejuno/patologia , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/uso terapêutico , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Mucolipidoses/tratamento farmacológico , Mucolipidoses/patologia , Miosina Tipo V/genética , Organoides , Cultura Primária de Células , Receptores Notch/antagonistas & inibidores , Células-Tronco/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos
9.
Gut Microbes ; 13(1): 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33985416

RESUMO

Endoplasmic reticulum (ER) stress compromises the secretion of MUC2 from goblet cells and has been linked with inflammatory bowel disease (IBD). Although Bifidobacterium can beneficially modulate mucin production, little work has been done investigating the effects of Bifidobacterium on goblet cell ER stress. We hypothesized that secreted factors from Bifidobacterium dentium downregulate ER stress genes and modulates the unfolded protein response (UPR) to promote MUC2 secretion. We identified by mass spectrometry that B. dentium secretes the antioxidant γ-glutamylcysteine, which we speculate dampens ER stress-mediated ROS and minimizes ER stress phenotypes. B. dentium cell-free supernatant and γ-glutamylcysteine were taken up by human colonic T84 cells, increased glutathione levels, and reduced ROS generated by the ER-stressors thapsigargin and tunicamycin. Moreover, B. dentium supernatant and γ-glutamylcysteine were able to suppress NF-kB activation and IL-8 secretion. We found that B. dentium supernatant, γ-glutamylcysteine, and the positive control IL-10 attenuated the induction of UPR genes GRP78, CHOP, and sXBP1. To examine ER stress in vivo, we first examined mono-association of B. dentium in germ-free mice which increased MUC2 and IL-10 levels compared to germ-free controls. However, no changes were observed in ER stress-related genes, indicating that B. dentium can promote mucus secretion without inducing ER stress. In a TNBS-mediated ER stress model, we observed increased levels of UPR genes and pro-inflammatory cytokines in TNBS treated mice, which were reduced with addition of live B. dentium or γ-glutamylcysteine. We also observed increased colonic and serum levels of IL-10 in B. dentium- and γ-glutamylcysteine-treated mice compared to vehicle control. Immunostaining revealed retention of goblet cells and mucus secretion in both B. dentium- and γ-glutamylcysteine-treated animals. Collectively, these data demonstrate positive modulation of the UPR and MUC2 production by B. dentium-secreted compounds.


Assuntos
Bifidobacterium/metabolismo , Colite/microbiologia , Colite/fisiopatologia , Colo/imunologia , Dipeptídeos/metabolismo , Estresse do Retículo Endoplasmático , Células Caliciformes/imunologia , Animais , Colite/induzido quimicamente , Colite/imunologia , Colo/microbiologia , Colo/fisiopatologia , Chaperona BiP do Retículo Endoplasmático , Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Mucina-2/genética , Mucina-2/imunologia , Ácido Trinitrobenzenossulfônico/efeitos adversos
10.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653893

RESUMO

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Assuntos
Membrana Externa Bacteriana/imunologia , Vesículas Extracelulares/imunologia , Fusobacterium nucleatum/imunologia , Fusobacterium nucleatum/metabolismo , Inflamação/microbiologia , Animais , Células Cultivadas , Colo/citologia , Meios de Cultura/farmacologia , Citocinas/análise , Citocinas/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Fusobacterium nucleatum/patogenicidade , Microbioma Gastrointestinal , Células HT29 , Humanos , Inflamação/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/imunologia
11.
Cell Mol Gastroenterol Hepatol ; 12(1): 59-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548596

RESUMO

BACKGROUND & AIMS: The molecular motor, Myosin Vb (MYO5B), is well documented for its role in trafficking cargo to the apical membrane of epithelial cells. Despite its involvement in regulating apical proteins, the role of MYO5B in cell polarity is less clear. Inactivating mutations in MYO5B result in microvillus inclusion disease (MVID), a disorder characterized by loss of key apical transporters and the presence of intracellular inclusions in enterocytes. We previously identified that inclusions in Myo5b knockout (KO) mice form from invagination of the apical brush border via apical bulk endocytosis. Herein, we sought to elucidate the role of polarity complexes and tight junction proteins during the formation of inclusions. METHODS: Intestinal tissue from neonatal control and Myo5b KO littermates was analyzed by immunofluorescence to determine the localization of polarity complexes and tight junction proteins. RESULTS: Proteins that make up the apical polarity complexes-Crumbs3 and Pars complexes-were associated with inclusions in Myo5b KO mice. In addition, tight junction proteins were observed to be concentrated over inclusions that were present at the apical membrane of Myo5b-deficient enterocytes in vivo and in vitro. Our mouse findings are complemented by immunostaining in a large animal swine model of MVID genetically engineered to express a human MVID-associated mutation that shows an accumulation of Claudin-2 over forming inclusions. The findings from our swine model of MVID suggest that a similar mechanism of tight junction accumulation occurs in patients with MVID. CONCLUSIONS: These data show that apical bulk endocytosis involves the altered localization of apical polarity proteins and tight junction proteins after loss of Myo5b.


Assuntos
Enterócitos/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Endocitose , Absorção Intestinal , Camundongos , Camundongos Knockout , Miosina Tipo V/deficiência , Proteínas de Junções Íntimas/genética
12.
Comput Struct Biotechnol J ; 19: 134-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425246

RESUMO

The gut microbiota and the host are intimately connected. The host physiology dictates the intestinal environment through regulation of pH, ion concentration, mucus production, etc., all of which exerts a selective pressure on the gut microbiota. Since different regions of the gastrointestinal tract are characterized by their own physicochemical conditions, distinct microbial communities are present in these locations. While it is widely accepted that the intestinal microbiome influences the host (tight junctions, cytokine/immune responses, diarrhea, etc.), the reciprocal interaction of the host on the microbiome is under-explored. This review aims to address these gaps in knowledge by focusing on how the host intestinal ion transport influences the luminal environment and thereby modulates the gut microbiota composition.

13.
Physiol Rep ; 9(2): e14719, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463911

RESUMO

BACKGROUND: Lactic acid bacteria are commensal members of the gut microbiota and are postulated to promote host health. Secreted factors and cell surface components from Lactobacillus species have been shown to modulate the host immune system. However, the precise role of L. reuteri secreted factors and surface proteins in influencing dendritic cells (DCs) remains uncharacterized. HYPOTHESIS: We hypothesize that L. reuteri secreted factors will promote DC maturation, skewing cells toward an anti-inflammatory phenotype. In acute colitis, we speculate that L. reuteri promotes IL-10 and dampens pro-inflammatory cytokine production, thereby improving colitis. METHODS & RESULTS: Mouse bone marrow-derived DCs were differentiated into immature dendritic cells (iDCs) via IL-4 and GM-CSF stimulation. iDCs exposed to L. reuteri secreted factors or UV-irradiated bacteria exhibited greater expression of DC maturation markers CD83 and CD86 by flow cytometry. Additionally, L. reuteri stimulated DCs exhibited phenotypic maturation as denoted by cytokine production, including anti-inflammatory IL-10. Using mouse colonic organoids, we found that the microinjection of L. reuteri secreted metabolites and UV-irradiated bacteria was able to promote IL-10 production by DCs, indicating potential epithelial-immune cross-talk. In a TNBS-model of acute colitis, L. reuteri administration significantly improved histological scoring, colonic cytokine mRNA, serum cytokines, and bolstered IL-10 production. CONCLUSIONS: Overall these data demonstrate that both L. reuteri secreted factors and its bacterial components are able to promote DC maturation. This work points to the specific role of L. reuteri in modulating intestinal DCs. NEW & NOTEWORTHY: Lactobacillus reuteri colonizes the mammalian gastrointestinal tract and exerts beneficial effects on host health. However, the mechanisms behind these effects have not been fully explored. In this article, we identified that L. reuteri ATTC PTA 6475 metabolites and surface components promote dendritic cell maturation and IL-10 production. In acute colitis, we also demonstrate that L. reuteri can promote IL-10 and suppress inflammation. These findings may represent a crucial mechanism for maintaining intestinal immune homeostasis.


Assuntos
Colite/imunologia , Células Dendríticas/imunologia , Limosilactobacillus reuteri/imunologia , Probióticos/administração & dosagem , Animais , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Citocinas/sangue , Citocinas/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/microbiologia , Feminino , Microbioma Gastrointestinal , Imunomodulação , Masculino , Camundongos , Camundongos Endogâmicos BALB C
14.
Gastroenterology ; 160(4): 1301-1314.e8, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33227279

RESUMO

BACKGROUND & AIMS: Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C difficile. We hypothesized that select mucus-associated bacteria would promote C difficile colonization and biofilm formation. METHODS: To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C difficile with the addition of human MUC2-coated coverslips. RESULTS: C difficile was found to colonize and form biofilms on MUC2-coated coverslips, and 16S rRNA sequencing showed a unique biofilm profile with substantial cocolonization with Fusobacterium species. Consistent with our bioreactor data, publicly available data sets and patient stool samples showed that a subset of patients with C difficile infection harbored high levels of Fusobacterium species. We observed colocalization of C difficile and F nucleatum in an aggregation assay using adult patients and stool of pediatric patients with inflammatory bowel disease and in tissue sections of patients with CDI. C difficile strains were found to coaggregate with F nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C difficile. Aggregation was shown to be unique between F nucleatum and C difficile, because other gut commensals did not aggregate with C difficile. Addition of F nucleatum also enhanced C difficile biofilm formation and extracellular polysaccharide production. CONCLUSIONS: Collectively, these data show a unique interaction of between pathogenic C difficile and F nucleatum in the intestinal mucus layer.


Assuntos
Adesinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/imunologia , Fusobacterium nucleatum/imunologia , Microbioma Gastrointestinal/imunologia , Adesinas Bacterianas/genética , Aderência Bacteriana/imunologia , Biofilmes , Reatores Biológicos/microbiologia , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Flagelos/genética , Flagelos/metabolismo , Fusobacterium nucleatum/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucina-2/metabolismo
15.
ACS Infect Dis ; 7(5): 1126-1142, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33176423

RESUMO

It is widely accepted that the pathogen Clostridioides difficile exploits an intestinal environment with an altered microbiota, but the details of these microbe-microbe interactions are unclear. Adherence and colonization of mucus has been demonstrated for several enteric pathogens and it is possible that mucin-associated microbes may be working in concert with C. difficile. We showed that C. difficile ribotype-027 adheres to MUC2 glycans and using fecal bioreactors, we identified that C. difficile associates with several mucin-degrading microbes. C. difficile was found to chemotax toward intestinal mucus and its glycan components, demonstrating that C. difficile senses the mucus layer. Although C. difficile lacks the glycosyl hydrolases required to degrade mucin glycans, coculturing C. difficile with the mucin-degrading Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Ruminococcus torques allowed C. difficile to grow in media that lacked glucose but contained purified MUC2. Collectively, these studies expand our knowledge on how intestinal microbes support C. difficile.


Assuntos
Clostridioides difficile , Clostridioides , Clostridiales , Humanos , Monossacarídeos , Mucinas , Muco
16.
Cell Mol Gastroenterol Hepatol ; 11(1): 221-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32795610

RESUMO

BACKGROUND & AIMS: The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS: Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS: B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS: These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.


Assuntos
Bifidobacterium/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Serotonina/metabolismo , Acetatos/metabolismo , Animais , Comportamento Animal/fisiologia , Bifidobacterium/isolamento & purificação , Técnicas de Cultura de Células , Células Enterocromafins/metabolismo , Vida Livre de Germes , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Modelos Animais , Organoides , Receptores de Serotonina/metabolismo
17.
Gastroenterology ; 159(6): 2077-2091.e8, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891625

RESUMO

BACKGROUND & AIMS: Severe injury to the lining of the stomach leads to changes in the epithelium (reprogramming) that protect and promote repair of the tissue, including development of spasmolytic polypeptide-expressing metaplasia (SPEM) and tuft and foveolar cell hyperplasia. Acute gastric damage elicits a type-2 inflammatory response that includes production of type-2 cytokines and infiltration by eosinophils and alternatively activated macrophages. Stomachs of mice that lack interleukin 33 (IL33) or interleukin 13 (IL13) did not undergo epithelial reprogramming after drug-induced injury. We investigated the role of group 2 innate lymphoid cells (ILC2s) in gastric epithelial repair. METHODS: Acute gastric injury was induced in C57BL/6J mice (wild-type and RAG1 knockout) by administration of L635. We isolated ILC2s by flow cytometry from stomachs of mice that were and were not given L635 and performed single-cell RNA sequencing. ILC2s were depleted from wild-type and RAG1-knockout mice by administration of anti-CD90.2. We assessed gastric cell lineages, markers of metaplasia, inflammation, and proliferation. Gastric tissue microarrays from patients with gastric adenocarcinoma were analyzed by immunostaining. RESULTS: There was a significant increase in the number of GATA3-positive ILC2s in stomach tissues from wild-type mice after L635-induced damage, but not in stomach tissues from IL33-knockout mice. We characterized a marker signature of gastric mucosal ILC2s and identified a transcription profile of metaplasia-associated ILC2s, which included changes in expression of Il5, Il13, Csf2, Pd1, and Ramp3; these changes were validated by quantitative polymerase chain reaction and immunocytochemistry. Depletion of ILC2s from mice blocked development of metaplasia after L635-induced injury in wild-type and RAG1-knockout mice and prevented foveolar and tuft cell hyperplasia and infiltration or activation of macrophages after injury. Numbers of ILC2s were increased in stomach tissues from patients with SPEM compared with patients with normal corpus mucosa. CONCLUSIONS: In analyses of stomach tissues from mice with gastric tissue damage and patients with SPEM, we found evidence of type 2 inflammation and increased numbers of ILC2s. Our results suggest that ILC2s coordinate the metaplastic response to severe gastric injury.


Assuntos
Mucosa Gástrica/patologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Animais , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Humanos , Interleucina-33/genética , Metaplasia/induzido quimicamente , Metaplasia/genética , Metaplasia/imunologia , Camundongos , Camundongos Knockout
18.
Gastroenterology ; 159(4): 1390-1405.e20, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534933

RESUMO

BACKGROUND & AIM: Myosin VB (MYO5B) is an essential trafficking protein for membrane recycling in gastrointestinal epithelial cells. The inactivating mutations of MYO5B cause the congenital diarrheal disease, microvillus inclusion disease (MVID). MYO5B deficiency in mice causes mislocalization of SGLT1 and NHE3, but retained apical function of CFTR, resulting in malabsorption and secretory diarrhea. Activation of lysophosphatidic acid (LPA) receptors can improve diarrhea, but the effect of LPA on MVID symptoms is unclear. We investigated whether LPA administration can reduce the epithelial deficits in MYO5B-knockout mice. METHODS: Studies were conducted with tamoxifen-induced, intestine-specific knockout of MYO5B (VilCreERT2;Myo5bflox/flox) and littermate controls. Mice were given LPA, an LPAR2 agonist (GRI977143), or vehicle for 4 days after a single injection of tamoxifen. Apical SGLT1 and CFTR activities were measured in Üssing chambers. Intestinal tissues were collected, and localization of membrane transporters was evaluated by immunofluorescence analysis in tissue sections and enteroids. RNA sequencing and enrichment analysis were performed with isolated jejunal epithelial cells. RESULTS: Daily administration of LPA reduced villus blunting, frequency of multivesicular bodies, and levels of cathepsins in intestinal tissues of MYO5B-knockout mice compared with vehicle administration. LPA partially restored the brush border height and the localization of SGLT1 and NHE3 in small intestine of MYO5B-knockout mice and enteroids. The SGLT1-dependent short-circuit current was increased and abnormal CFTR activities were decreased in jejunum from MYO5B-knockout mice given LPA compared with vehicle. CONCLUSIONS: LPA may regulate a MYO5B-independent trafficking mechanism and brush border maturation, and therefore be developed for treatment of MVID.


Assuntos
Lisofosfolipídeos/uso terapêutico , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/patologia , Microvilosidades/patologia , Mucolipidoses/tratamento farmacológico , Mucolipidoses/patologia , Miosina Tipo V/deficiência , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Modelos Animais de Doenças , Enterócitos/patologia , Síndromes de Malabsorção/etiologia , Camundongos , Camundongos Knockout , Mucolipidoses/etiologia
19.
Gastroenterology ; 158(8): 2236-2249.e9, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112796

RESUMO

BACKGROUND & AIMS: Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS: Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS: Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS: We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.


Assuntos
Duodeno/metabolismo , Edição de Genes , Mucosa Intestinal/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Técnicas de Cocultura , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Duodeno/patologia , Predisposição Genética para Doença , Humanos , Mucosa Intestinal/patologia , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Mutação de Sentido Incorreto , Fenótipo , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Trocador 3 de Sódio-Hidrogênio/genética , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA