Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673766

RESUMO

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Assuntos
Eritritol , Eritritol/análogos & derivados , Populus , Fosfatos Açúcares , Transferases , Populus/genética , Populus/metabolismo , Populus/enzimologia , Eritritol/metabolismo , Fosfatos Açúcares/metabolismo , Transferases/metabolismo , Transferases/genética , Hemiterpenos/metabolismo , Butadienos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Pentanos/metabolismo , Plantas Geneticamente Modificadas
2.
Biol Lett ; 19(11): 20230301, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909057

RESUMO

Hydrocarbons (HCs) fulfil indispensable functions in insects, protecting against desiccation and serving chemical communication. However, the link between composition and function, and the selection pressures shaping HC profiles remain poorly understood. Beewolf digger wasps (Hymenoptera: Crabronidae) use an antennal gland secretion rich in linear unsaturated HCs to form a hydrophobic barrier around their defensive bacterial symbiont, protecting it from brood cell fumigation by toxic egg-produced nitric oxide (NO). Virtually identical HC compositions mediate desiccation protection and prey preservation from moulding in underground beewolf brood cells. It is unknown whether this composition presents an optimized adaptation to all functions, or a compromise due to conflicting selection pressures. Here, we reconstitute the NO barrier with single and binary combinations of synthetic linear saturated and unsaturated HCs, corresponding to HCs found in beewolves. The results show that pure alkanes as well as 3 : 1 mixtures of alkanes and alkenes resembling the composition of beewolf HCs form efficient protective barriers against NO, indicating that protection can be achieved by different mixtures of HCs. Since in vitro assays with symbiont cultures from different beewolf hosts indicate widespread NO sensitivity, HC-mediated protection from NO is likely important across Philanthini wasps. We conclude that HC-mediated protection of the symbiont from NO does not exert a conflicting selection pressure on the multifunctional HC profile of beewolves.


Assuntos
Vespas , Animais , Hidrocarbonetos , Alcanos , Alcenos , Simbiose
3.
Front Microbiol ; 14: 1199370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497544

RESUMO

Insects frequently associate with intracellular microbial symbionts (endosymbionts) that enhance their ability to cope with challenging environmental conditions. Endosymbioses with cuticle-enhancing microbes have been reported in several beetle families. However, the ecological relevance of these associations has seldom been demonstrated, particularly in the context of dry environments where high cuticle quality can reduce water loss. Thus, we investigated how cuticle-enhancing symbionts of the rice-weevil, Sitophilus oryzae contribute to desiccation resistance. We exposed symbiotic and symbiont-free (aposymbiotic) beetles to long-term stressful (47% RH) or relaxed (60% RH) humidity conditions and measured population growth. We found that symbiont presence benefits host fitness especially under dry conditions, enabling symbiotic beetles to increase their population size by over 33-fold within 3 months, while aposymbiotic beetles fail to increase in numbers beyond the starting population in the same conditions. To understand the mechanisms underlying this drastic effect, we compared beetle size and body water content and found that endosymbionts confer bigger body size and higher body water content. While chemical analyses revealed no significant differences in composition and quantity of cuticular hydrocarbons after long-term exposure to desiccation stress, symbiotic beetles lost water at a proportionally slower rate than did their aposymbiotic counterparts. We posit that the desiccation resistance and higher fitness observed in symbiotic beetles under dry conditions is due to their symbiont-enhanced thicker cuticle, which provides protection against cuticular transpiration. Thus, we demonstrate that the cuticle enhancing symbiosis of Sitophilus oryzae confers a fitness benefit under drought stress, an ecologically relevant condition for grain pest beetles. This benefit likely extends to many other systems where symbiont-mediated cuticle synthesis has been identified, including taxa spanning beetles and ants that occupy different ecological niches.

4.
Proc Natl Acad Sci U S A ; 120(31): e2302721120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487102

RESUMO

Symbioses with microbes play a pivotal role in the evolutionary success of insects, and can lead to intimate host-symbiont associations. However, how the host maintains a stable symbiosis with its beneficial partners while keeping antagonistic microbes in check remains incompletely understood. Here, we uncover a mechanism by which a host protects its symbiont from the host's own broad-range antimicrobial defense during transmission. Beewolves, a group of solitary digger wasps (Hymenoptera: Crabronidae), provide their brood cells with symbiotic Streptomyces bacteria that are later transferred to the cocoon and protect the offspring from opportunistic pathogens by producing antibiotics. In the brood cell, however, the symbiont-containing secretion is exposed to a toxic burst of nitric oxide (NO) released by the beewolf egg, which effectively kills antagonistic microorganisms. How the symbiont survives this lethal NO burst remained unknown. Here, we report that upon NO exposure in vitro, the symbionts mount a global stress response, but this is insufficient to ensure survival at brood cell-level NO concentrations. Instead, in vivo bioassays demonstrate that the host's antennal gland secretion (AGS) surrounding the symbionts in the brood cell provides an effective diffusion barrier against NO. This physicochemical protection can be reconstituted in vitro by beewolf hydrocarbon extracts and synthetic hydrocarbons, indicating that the host-derived long-chain alkenes and alkanes in the AGS are responsible for shielding the symbionts from NO. Our results reveal how host adaptations can protect a symbiont from host-generated oxidative and nitrosative stress during transmission, thereby efficiently balancing pathogen defense and mutualism maintenance.


Assuntos
Anti-Infecciosos , Himenópteros , Animais , Evolução Biológica , Simbiose/fisiologia , Hidrocarbonetos
5.
ISME J ; 17(7): 1029-1039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37085551

RESUMO

Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.


Assuntos
Besouros , Animais , Besouros/microbiologia , Filogenia , Simbiose/genética , Bactérias/genética , Insetos/microbiologia , Suplementos Nutricionais , Genoma Bacteriano
6.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656757

RESUMO

Protein feeding is critical for male reproductive success in many insect species. However, how protein affects the reproduction remains largely unknown. Using Bactrocera dorsalis as the study model, we investigated how protein feeding regulated sex pheromone synthesis. We show that protein ingestion is essential for sex pheromone synthesis in male. While protein feeding or deprivation did not affect Bacillus abundance, transcriptome analysis revealed that sarcosine dehydrogenase (Sardh) in protein-fed males regulates the biosynthesis of sex pheromones by increasing glycine and threonine (sex pheromone precursors) contents. RNAi-mediated loss-of-function of Sardh decreases glycine, threonine, and sex pheromone contents and results in decreased mating ability in males. The study links male feeding behavior with discrete patterns of gene expression that plays role in sex pheromone synthesis, which in turn translates to successful copulatory behavior of the males.


Assuntos
Atrativos Sexuais , Tephritidae , Animais , Masculino , Insetos/genética , Tephritidae/genética , Perfilação da Expressão Gênica , Interferência de RNA
7.
Front Surg ; 9: 1038336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504575

RESUMO

Background: Structured curricula are demanded to improve training programs of future urologists. This study aimed to evaluate the acceptance of the newly implemented residency rotation program at the University Hospital Frankfurt. Primary endpoint was resident's satisfaction with the current residency rotation program. Secondary endpoint was the fulfilment of the objectives and expectations by residents. Methods: A standardized 15-item, online-based survey was sent to every urologic resident of the University Hospital Frankfurt, completing their rotation between August 2020 and August 2022. In addition to baseline characteristics, training and working conditions were assessed. Descriptive statistics were applied. Results: In total 15 rotations of the Residency Rotation Program at the University Hospital Frankfurt were evaluated, including urologic practice (5/15), Intermediate Care Unit (4/15), urooncology (4/15) and clinical exchange to St. Gallen (2/15). Overall, the majority were very (67%) or rather satisfied (2%) with their rotation. Of the pre-rotation defined objectives, 71% were fulfilled, 18% partially fulfilled and 8% not fulfilled. With respect to the expectations, 67% were fulfilled, 19% partly fulfilled and 4% were not fulfilled. All residents would recommend their respective rotations. Conclusion: Our results demonstrate that the residency rotation program at the University Hospital Frankfurt enjoys a high level of acceptance as well as a positive impact on urologic training. Satisfaction with the completed rotation was convincing, most of the expectations and objectives for the respective rotation could be fulfilled. These results help to ensure the quality of urologic curricula and to improve the structure of training programs for future urologists.

8.
Mol Ecol ; 31(24): 6570-6587, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36201377

RESUMO

The endosymbiotic Wolbachia is one of the most common intracellular bacteria known in arthropods and nematodes. Its ability for reproductive manipulation can cause unequal inheritance to male and female offspring, allowing the manipulator to spread, but potentially also impact the evolutionary dynamics of infected hosts. Estimated to be present in up to 66% of insect species, little is known about the phenotypic impact of Wolbachia within the order Coleoptera. Here, we describe the reproductive manipulation by the Wolbachia strain wSur harboured by the sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera, Silvanidae), through a combination of genomics approaches and bioassays. The Wolbachia strain wSur belongs to supergroup B that contains well-described reproductive manipulators of insects and encodes a pair of cytoplasmic incompatibility factor (cif) genes, as well as multiple homologues of the WO-mediated killing (wmk) gene. A phylogenetic comparison with wmk homologues of wMel of Drosophila melanogaster identified 18 wmk copies in wSur, including one that is closely related to the wMel male-killing homologue. However, further analysis of this particular wmk gene revealed an eight-nucleotide deletion leading to a stop-codon and subsequent reading frame shift midsequence, probably rendering it nonfunctional. Concordantly, utilizing a Wolbachia-deprived O. surinamensis population and controlled mating pairs of wSur-infected and noninfected partners, we found no experimental evidence for male-killing. However, a significant ~50% reduction of hatching rates in hybrid crosses of uninfected females with infected males indicates that wSur is causing cytoplasmic incompatibility. Thus, Wolbachia also represents an important determinant of host fitness in Coleoptera.


Assuntos
Besouros , Wolbachia , Animais , Masculino , Feminino , Wolbachia/genética , Besouros/genética , Besouros/microbiologia , Drosophila melanogaster/genética , Filogenia , Citoplasma/genética , Citoplasma/microbiologia , Simbiose/genética
9.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854911

RESUMO

Many insects benefit from bacterial symbionts that provide essential nutrients and thereby extend the hosts' adaptive potential and their ability to cope with challenging environments. However, the implications of nutritional symbioses for the hosts' defence against natural enemies remain largely unstudied. Here, we investigated whether the cuticle-enhancing nutritional symbiosis of the saw-toothed grain beetle Oryzaephilus surinamensis confers protection against predation and fungal infection. We exposed age-defined symbiotic and symbiont-depleted (aposymbiotic) beetles to two antagonists that must actively penetrate the cuticle for a successful attack: wolf spiders (Lycosidae) and the fungal entomopathogen Beauveria bassiana. While young beetles suffered from high predation and fungal infection rates regardless of symbiont presence, symbiotic beetles were able to escape this period of vulnerability and reach high survival probabilities significantly faster than aposymbiotic beetles. To understand the mechanistic basis of these differences, we conducted a time-series analysis of cuticle development in symbiotic and aposymbiotic beetles by measuring cuticular melanisation and thickness. The results reveal that the symbionts accelerate their host's cuticle formation and thereby enable it to quickly reach a cuticle quality threshold that confers structural protection against predation and fungal infection. Considering the widespread occurrence of cuticle enhancement via symbiont-mediated tyrosine supplementation in beetles and other insects, our findings demonstrate how nutritional symbioses can have important ecological implications reaching beyond the immediate nutrient-provisioning benefits.


Assuntos
Besouros , Micoses , Animais , Comportamento Predatório , Simbiose
10.
J Clin Med ; 10(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34945218

RESUMO

The assessment of aortic root dimensions is a cornerstone in cardiac pre-participation screening as dilation can result in severe cardiac events. Moreover, it can be a hint for an underlying connective tissue disease, which needs individualized sports counseling. This study examines the prevalence of aortic root dilatation in a cohort and its relationship to arterial stiffness as an early marker of cardiovascular risk due to vascular aging. From May 2012 to March 2018, we examined 281 young male athletes (14.7 ± 2.1 years) for their aortic root dimension. Moreover, we noninvasively assessed arterial stiffness parameter during pre-participation screening. Mean aortic diameter was 25.9 ± 3.1 mm and 18 of the 281 (6.4%) athletes had aortic root dilation without other clinical evidence of connective tissue disease. After adjusting for BSA, there was no association of aortic root diameter to pulse wave velocity (p = -0.054 r = 0.368) nor to central blood pressure (p = -0.029 r = 0.634). Thus, although a significant proportion of young athletes had aortic root dilatation, which certainly needs regular follow up, no correlation with arterial stiffness was found. It could be suggested that a dilated aortic root in young athletes does not alter pulse waveform and pulse reflection, and thus there is no increased cardiovascular risk in those subjects.

12.
Front Cardiovasc Med ; 8: 618294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307488

RESUMO

Even though exercise generally has a positive effect on health, intensive exercise can have adverse effects on the vascular system of adults. This study aimed to investigate the association between training duration and intensity and vascular structure and function in 427 physically active children and adolescents (14.0 ± 1.94 years). In this study, we examined carotid intima-media thickness (cIMT), carotid diameter, and cIMT:diameter-ratio as parameters of carotid arterial structure and arterial compliance (AC), stiffness index ß (ß), elastic modulus (Ep), and carotid pulse wave velocity (PWVß) as parameters of carotid arterial function with high-resolution ultrasound. We collected central systolic blood pressure (cSBP) and aortic pulse wave velocity (aPWV) as parameters of central arterial stiffness with an oscillometric device. We used the MoMo Physical Activity Questionnaire to record training duration and intensity. Training duration (p = 0.022) and intensity (p = 0.024) were associated with higher cIMT. Further, training duration was associated with lower central arterial stiffness (cSBP: p = 0.001; aPWV: p = 0.033) and improved AC (p < 0.001). Higher training intensity was related to improved AC (p < 0.001) and larger carotid diameter (p = 0.040). Boys presented thicker cIMT (p = 0.010), improved AC (p = 0.006), and lower central arterial stiffness (cSBP: p < 0.001; aPWV: p = 0.016) associated with higher training duration. Girls presented improved AC (p = 0.023) and lower Ep (p = 0.038) but higher ß (p = 0.036) associated with higher training duration. Only boys demonstrated thicker cIMT (p = 0.016) and improved AC (p = 0.002) associated with higher training intensity. A quintile analyses of the training duration revealed thicker cIMT of children and adolescents in Q1 and Q5 than that in Q4 and Q5. Besides, Q1 showed lower cSBP compared to Q4 and Q5. Regarding training intensity, Q5 had thicker cIMT than Q2 and Q3. Although a higher training load is associated with thicker cIMT, the common carotid artery is also more elastic. This suggests that a higher training load leads to a functional adaptation of the carotid artery in youth.

13.
Commun Biol ; 4(1): 554, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976379

RESUMO

Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.


Assuntos
Besouros/metabolismo , Glicina/análogos & derivados , Simbiose/fisiologia , Escamas de Animais/metabolismo , Animais , Besouros/fisiologia , Glicina/metabolismo , Glicina/farmacologia , Herbicidas , Filogenia , Ácido Chiquímico/metabolismo , Simbiose/efeitos dos fármacos , Glifosato
14.
Curr Biol ; 31(10): R474-R476, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033768

RESUMO

Males of the olive fruit fly Bactrocera dorsalis team up with Bacillus bacteria in their rectal glands to synthesize 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) from glucose and threonine. The bacterially produced TMP and TTMP are utilized as sex pheromones to attract virgin females.


Assuntos
Atrativos Sexuais , Tephritidae , Animais , Bactérias , Amigos , Frutas , Humanos
15.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883280

RESUMO

Genome erosion is a frequently observed result of relaxed selection in insect nutritional symbionts, but it has rarely been studied in defensive mutualisms. Solitary beewolf wasps harbor an actinobacterial symbiont of the genus Streptomyces that provides protection to the developing offspring against pathogenic microorganisms. Here, we characterized the genomic architecture and functional gene content of this culturable symbiont using genomics, transcriptomics, and proteomics in combination with in vitro assays. Despite retaining a large linear chromosome (7.3 Mb), the wasp symbiont accumulated frameshift mutations in more than a third of its protein-coding genes, indicative of incipient genome erosion. Although many of the frameshifted genes were still expressed, the encoded proteins were not detected, indicating post-transcriptional regulation. Most pseudogenization events affected accessory genes, regulators, and transporters, but "Streptomyces philanthi" also experienced mutations in central metabolic pathways, resulting in auxotrophies for biotin, proline, and arginine that were confirmed experimentally in axenic culture. In contrast to the strong A+T bias in the genomes of most obligate symbionts, we observed a significant G+C enrichment in regions likely experiencing reduced selection. Differential expression analyses revealed that-compared to in vitro symbiont cultures-"S. philanthi" in beewolf antennae showed overexpression of genes for antibiotic biosynthesis, the uptake of host-provided nutrients and the metabolism of building blocks required for antibiotic production. Our results show unusual traits in the early stage of genome erosion in a defensive symbiont and suggest tight integration of host-symbiont metabolic pathways that effectively grants the host control over the antimicrobial activity of its bacterial partner.


Assuntos
Antibacterianos/biossíntese , Genoma Bacteriano , Pseudogenes , Streptomyces/genética , Vespas/microbiologia , Animais , Antenas de Artrópodes/metabolismo , Feminino , Chaperonas Moleculares/metabolismo , Streptomyces/metabolismo , Simbiose
16.
Front Sports Act Living ; 3: 633873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791599

RESUMO

Young athletes most often exceed the physical activity recommendations of the World Health Organization. Therefore, they are of special interest for investigating cardiovascular adaptions to exercise. This study aimed to examine the arterial structure and function of young athletes 12-17 years old and compare these parameters to reference values of healthy cohorts. Carotid intima-media thickness (cIMT), carotid diameter, cIMT÷carotid diameter-ratio (cIDR), arterial compliance (AC), elastic modulus (Ep), ß stiffness index (ß), and carotid pulse wave velocity (PWVß) were determined using ultrasound in 331 young athletes (77 girls; mean age, 14.6 ± 1.30 years). Central systolic blood pressure (cSBP) and aortic PWV (aPWV) were measured using the oscillometric device Mobil-O-Graph. Standard deviation scores (SDS) of all parameters were calculated according to German reference values. The 75th and 90th percentiles were defined as the threshold for elevated cIMT and arterial stiffness, respectively. Activity behavior was assessed with the MoMo physical activity questionnaire, and maximum power output with a standard cardiopulmonary exercise test. One-sample t-tests were performed to investigate the significant deviations in SDS values compared to the value "0". All subjects participated in competitive sports for at least 6 h per week (565.6 ± 206.0 min/week). Of the 331 young athletes, 135 (40.2%) had cIMT >75th percentile, 71 (21.5%) had cSBP >90th percentile, and 94 (28.4%) had aPWV>90th percentile. We observed higher cIMT SDS (p < 0.001), cIDR SDS (p = 0.009), and AC SDS (p < 0.001) but lower ß SDS (p < 0.001), Ep SDS (p < 0.001), and PWVß SDS (p < 0.001) compared to the reference cohort. The cSBP SDS (p < 0.001) and aPWV SDS (p < 0.001) were elevated. In conclusion, cIMT and cIDR were higher in young athletes than in a reference cohort. Furthermore, young athletes presented better carotid elasticity and lower arterial stiffness of the carotid artery. However, central arterial stiffness was higher compared to the reference cohort. The thickening of the carotid intima-media complex in combination with a reduction in arterial stiffness indicates a physiological adaptation to exercise in youth.

17.
Front Surg ; 7: 561853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102515

RESUMO

Objective: Many patients with localized prostate cancer (PCa) do not immediately undergo radical prostatectomy (RP) after biopsy confirmation. The aim of this study was to investigate the influence of "time-from-biopsy-to- prostatectomy" on adverse pathological outcomes. Materials and Methods: Between January 2014 and December 2019, 437 patients with intermediate- and high risk PCa who underwent RP were retrospectively identified within our prospective institutional database. For the aim of our study, we focused on patients with intermediate- (n = 285) and high-risk (n = 151) PCa using D'Amico risk stratification. Endpoints were adverse pathological outcomes and proportion of nerve-sparing procedures after RP stratified by "time-from-biopsy-to-prostatectomy": ≤3 months vs. >3 and < 6 months. Medians and interquartile ranges (IQR) were reported for continuously coded variables. The chi-square test examined the statistical significance of the differences in proportions while the Kruskal-Wallis test was used to examine differences in medians. Multivariable (ordered) logistic regressions, analyzing the impact of time between diagnosis and prostatectomy, were separately run for all relevant outcome variables (ISUP specimen, margin status, pathological stage, pathological nodal status, LVI, perineural invasion, nerve-sparing). Results: We observed no difference between patients undergoing RP ≤3 months vs. >3 and <6 months after diagnosis for the following oncological endpoints: pT-stage, ISUP grading, probability of a positive surgical margin, probability of lymph node invasion (LNI), lymphovascular invasion (LVI), and perineural invasion (pn) in patients with intermediate- and high-risk PCa. Likewise, the rates of nerve sparing procedures were 84.3 vs. 87.4% (p = 0.778) and 61.0% vs. 78.8% (p = 0.211), for intermediate- and high-risk PCa patients undergoing surgery after ≤3 months vs. >3 and <6 months, respectively. In multivariable adjusted analyses, a time to surgery >3 months did not significantly worsen any of the outcome variables in patients with intermediate- or high-risk PCa (all p > 0.05). Conclusion: A "time-from-biopsy-to-prostatectomy" of >3 and <6 months is neither associated with adverse pathological outcomes nor poorer chances of nerve sparing RP in intermediate- and high-risk PCa patients.

18.
Insects ; 11(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092035

RESUMO

Animals engage in a plethora of mutualistic interactions with microorganisms that can confer various benefits to their host but can also incur context-dependent costs. The sawtoothed grain beetle Oryzaephilus surinamensis harbors nutritional, intracellular Bacteroidetes bacteria that supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host. Experimental elimination of the symbiont impairs cuticle formation and reduces fitness under desiccation stress but does not disrupt the host's life cycle. For this study, we first demonstrated that symbiont populations showed the strongest growth at the end of metamorphosis and then declined continuously in males, but not in females. The symbiont loss neither impacted the development time until adulthood nor adult mortality or lifespan. Furthermore, lifetime reproduction was not influenced by the symbiont presence. However, symbiotic females started to reproduce almost two weeks later than aposymbiotic ones. Thus, symbiont presence incurs a metabolic and context-dependent fitness cost to females, probably due to a nutrient allocation trade-off between symbiont growth and sexual maturation. The O. surinamensis symbiosis thereby represents an experimentally amenable system to study eco-evolutionary dynamics under variable selection pressures.

19.
Curr Opin Insect Sci ; 39: 14-20, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32086000

RESUMO

In addition to their well-studied contributions to their host's nutrition, digestion, and defense, microbial symbionts of insects are increasingly found to affect their host's response toward abiotic stressors. In particular, symbiotic microbes can reduce or enhance tolerance to temperature extremes, improve desiccation resistance by aiding cuticle biosynthesis and sclerotization, and detoxify heavy metals. As such, individual symbionts or microbial communities can expand or constrain the abiotic niche space of their host and determine its adaptability to fluctuating environments. In light of the increasing impact of humans on climate and environment, a better understanding of host-microbe interactions is necessary to predict how different insect species will respond to changes in abiotic conditions.


Assuntos
Aclimatação , Insetos/microbiologia , Simbiose/fisiologia , Exoesqueleto/metabolismo , Animais , Secas , Ecossistema , Interações entre Hospedeiro e Microrganismos , Insetos/fisiologia , Metais Pesados/metabolismo , Microbiota , Fixação de Nitrogênio , Estresse Fisiológico , Temperatura
20.
Elife ; 82019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31182189

RESUMO

Detrimental microbes caused the evolution of a great diversity of antimicrobial defenses in plants and animals. Insects developing underground seem particularly threatened. Here we show that the eggs of a solitary digger wasp, the European beewolf Philanthus triangulum, emit large amounts of gaseous nitric oxide (NO⋅) to protect themselves and their provisions, paralyzed honeybees, against mold fungi. We provide evidence that a NO-synthase (NOS) is involved in the generation of the extraordinary concentrations of nitrogen radicals in brood cells (~1500 ppm NO⋅ and its oxidation product NO2⋅). Sequencing of the beewolf NOS gene revealed no conspicuous differences to related species. However, due to alternative splicing, the NOS-mRNA in beewolf eggs lacks an exon near the regulatory domain. This preventive external application of high doses of NO⋅ by wasp eggs represents an evolutionary key innovation that adds a remarkable novel facet to the array of functions of the important biological effector NO⋅.


Assuntos
Radicais Livres/metabolismo , Fungos/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Óvulo/metabolismo , Vespas/metabolismo , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/toxicidade , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/fisiologia , Radicais Livres/toxicidade , Fungos/efeitos dos fármacos , Fungos/fisiologia , Óxido Nítrico/toxicidade , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Simbiose/efeitos dos fármacos , Vespas/genética , Vespas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA